葡聚糖纳米复合水凝胶骨再生生物学及生物活性评价。

IF 4.4 3区 医学 Q2 ENGINEERING, BIOMEDICAL Progress in Biomaterials Pub Date : 2021-12-01 Epub Date: 2021-11-01 DOI:10.1007/s40204-021-00171-6
Parisa Nikpour, Hamed Salimi-Kenari, Sayed Mahmood Rabiee
{"title":"葡聚糖纳米复合水凝胶骨再生生物学及生物活性评价。","authors":"Parisa Nikpour,&nbsp;Hamed Salimi-Kenari,&nbsp;Sayed Mahmood Rabiee","doi":"10.1007/s40204-021-00171-6","DOIUrl":null,"url":null,"abstract":"<p><p>Insufficient biological and bioactive properties of dextran hydrogels limit their applications as promising scaffolds for tissue engineering. We developed nanocomposite dextran hydrogels comprised of bioactive glass (nBGC: 64% SiO2, 31% CaO, 5% P<sub>2</sub>O<sub>5</sub>) nanoparticles with an average particle size of 77 nm using a chemical crosslinking of dextran chains to form 3D hydrogel networks. In the current study; bioactivity of the obtained nanocomposite hydrogels was evaluated through the formation of apatite crystal structures after the incubation in simulated body fluid (SBF) at various submersion periods and nBGC content. The scanning electron microscopy (SEM) micrographs represented an enhanced hydroxyapatite formation on the cross section of nanocomposite comprising of nBGC content from 2 to 8 (% by wt). Biomineralization results of Dex-8 (% by wt) composite during 7, 14 and 28 days immersion indicated the apatite layer formation and the growth of apatite crystal size on the surface and cross section of the nanocomposite. Moreover, MTT assessments indicated that human osteosarcoma cells (SaOS-2) were able to adhere and spread within the dextran hydrogels reinforced with the bioactive glass nanoparticles. With regard to enhanced bioactivity and biocompatibility, the developed dextran-nBGC hydrogel could be considered as a suitable candidate for bone tissue engineering application.</p>","PeriodicalId":20691,"journal":{"name":"Progress in Biomaterials","volume":"10 4","pages":"271-280"},"PeriodicalIF":4.4000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8633275/pdf/40204_2021_Article_171.pdf","citationCount":"5","resultStr":"{\"title\":\"Biological and bioactivity assessment of dextran nanocomposite hydrogel for bone regeneration.\",\"authors\":\"Parisa Nikpour,&nbsp;Hamed Salimi-Kenari,&nbsp;Sayed Mahmood Rabiee\",\"doi\":\"10.1007/s40204-021-00171-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Insufficient biological and bioactive properties of dextran hydrogels limit their applications as promising scaffolds for tissue engineering. We developed nanocomposite dextran hydrogels comprised of bioactive glass (nBGC: 64% SiO2, 31% CaO, 5% P<sub>2</sub>O<sub>5</sub>) nanoparticles with an average particle size of 77 nm using a chemical crosslinking of dextran chains to form 3D hydrogel networks. In the current study; bioactivity of the obtained nanocomposite hydrogels was evaluated through the formation of apatite crystal structures after the incubation in simulated body fluid (SBF) at various submersion periods and nBGC content. The scanning electron microscopy (SEM) micrographs represented an enhanced hydroxyapatite formation on the cross section of nanocomposite comprising of nBGC content from 2 to 8 (% by wt). Biomineralization results of Dex-8 (% by wt) composite during 7, 14 and 28 days immersion indicated the apatite layer formation and the growth of apatite crystal size on the surface and cross section of the nanocomposite. Moreover, MTT assessments indicated that human osteosarcoma cells (SaOS-2) were able to adhere and spread within the dextran hydrogels reinforced with the bioactive glass nanoparticles. With regard to enhanced bioactivity and biocompatibility, the developed dextran-nBGC hydrogel could be considered as a suitable candidate for bone tissue engineering application.</p>\",\"PeriodicalId\":20691,\"journal\":{\"name\":\"Progress in Biomaterials\",\"volume\":\"10 4\",\"pages\":\"271-280\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8633275/pdf/40204_2021_Article_171.pdf\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Biomaterials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s40204-021-00171-6\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/11/1 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40204-021-00171-6","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/11/1 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 5

摘要

右旋糖酐水凝胶的生物学和生物活性不足限制了其作为组织工程支架的应用前景。我们开发了由生物活性玻璃(nBGC: 64% SiO2, 31% CaO, 5% P2O5)纳米颗粒组成的纳米复合葡聚糖水凝胶,平均粒径为77 nm,通过葡聚糖链的化学交联形成3D水凝胶网络。在目前的研究中;通过模拟体液(SBF)中不同浸没时间和nBGC含量的磷灰石晶体结构的形成来评价所获得的纳米复合水凝胶的生物活性。扫描电镜(SEM)显示,在nBGC含量为2 ~ 8 (% by wt)的纳米复合材料的横截面上,羟基磷灰石形成增强。Dex-8 (% by wt)复合材料浸泡7、14和28天的生物矿化结果表明,纳米复合材料表面和横截面上磷灰石层的形成和磷灰石晶体尺寸的增长。此外,MTT评估表明,人类骨肉瘤细胞(SaOS-2)能够粘附和扩散在由生物活性玻璃纳米颗粒增强的葡聚糖水凝胶中。从增强的生物活性和生物相容性方面来看,所制备的葡聚糖- nbgc水凝胶可以被认为是骨组织工程应用的合适候选物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Biological and bioactivity assessment of dextran nanocomposite hydrogel for bone regeneration.

Insufficient biological and bioactive properties of dextran hydrogels limit their applications as promising scaffolds for tissue engineering. We developed nanocomposite dextran hydrogels comprised of bioactive glass (nBGC: 64% SiO2, 31% CaO, 5% P2O5) nanoparticles with an average particle size of 77 nm using a chemical crosslinking of dextran chains to form 3D hydrogel networks. In the current study; bioactivity of the obtained nanocomposite hydrogels was evaluated through the formation of apatite crystal structures after the incubation in simulated body fluid (SBF) at various submersion periods and nBGC content. The scanning electron microscopy (SEM) micrographs represented an enhanced hydroxyapatite formation on the cross section of nanocomposite comprising of nBGC content from 2 to 8 (% by wt). Biomineralization results of Dex-8 (% by wt) composite during 7, 14 and 28 days immersion indicated the apatite layer formation and the growth of apatite crystal size on the surface and cross section of the nanocomposite. Moreover, MTT assessments indicated that human osteosarcoma cells (SaOS-2) were able to adhere and spread within the dextran hydrogels reinforced with the bioactive glass nanoparticles. With regard to enhanced bioactivity and biocompatibility, the developed dextran-nBGC hydrogel could be considered as a suitable candidate for bone tissue engineering application.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Progress in Biomaterials
Progress in Biomaterials MATERIALS SCIENCE, BIOMATERIALS-
CiteScore
9.60
自引率
4.10%
发文量
35
期刊介绍: Progress in Biomaterials is a multidisciplinary, English-language publication of original contributions and reviews concerning studies of the preparation, performance and evaluation of biomaterials; the chemical, physical, biological and mechanical behavior of materials both in vitro and in vivo in areas such as tissue engineering and regenerative medicine, drug delivery and implants where biomaterials play a significant role. Including all areas of: design; preparation; performance and evaluation of nano- and biomaterials in tissue engineering; drug delivery systems; regenerative medicine; implantable medical devices; interaction of cells/stem cells on biomaterials and related applications.
期刊最新文献
Chitosan scaffolds with mesoporous hydroxyapatite and mesoporous bioactive glass. Correction to: Sustained release of valproic acid loaded on chitosan nanoparticles within hybrid of alginate/chitosan hydrogel with/without stem cells in regeneration of spinal cord injury. Anticancer potential of biologically synthesized silver nanoparticles using Lantana camara leaf extract. Sustained release of valproic acid loaded on chitosan nanoparticles within hybrid of alginate/chitosan hydrogel with/without stem cells in regeneration of spinal cord injury. Acceleration in healing of infected full-thickness wound with novel antibacterial γ-AlOOH-based nanocomposites.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1