来源于人体肠道菌群革兰氏阴性菌群的脂多糖促进炎症和肥胖的发展。

IF 4.3 4区 医学 Q2 IMMUNOLOGY International Reviews of Immunology Pub Date : 2022-01-01 Epub Date: 2021-11-02 DOI:10.1080/08830185.2021.1996573
Liyu Du, Xi Lei, Jie Wang, Li Wang, Qingping Zhong, Xiang Fang, Pan Li, Bing Du, Yutao Wang, Zhenlin Liao
{"title":"来源于人体肠道菌群革兰氏阴性菌群的脂多糖促进炎症和肥胖的发展。","authors":"Liyu Du,&nbsp;Xi Lei,&nbsp;Jie Wang,&nbsp;Li Wang,&nbsp;Qingping Zhong,&nbsp;Xiang Fang,&nbsp;Pan Li,&nbsp;Bing Du,&nbsp;Yutao Wang,&nbsp;Zhenlin Liao","doi":"10.1080/08830185.2021.1996573","DOIUrl":null,"url":null,"abstract":"<p><p>Lipopolysaccharide (LPS) is the major component of the outer membrane of Gram-negative bacteria. It is found from intestinal microbes in the circulatory system and considered a trigger factor for low-grade inflammation in obesity. High-fat diet intake and its related obesity can cause gut microbiota disorder, leading to increased gut permeability, paracellular absorption and transcellular transport of endogenous endotoxin in the cardiovascular system. High-fat diet intake can also increase plasma LPS levels, and causing chronic or \"low-grade\" inflammation. In this review article, we summarize the recent research advancements on the mechanism of low-grade inflammation and its related obesity. We also propose several approaches that can be used to reduce endogenous endotoxin absorption.Supplemental data for this article is available online at https://doi.org/10.1080/08830185.2021.1996573 .</p>","PeriodicalId":14333,"journal":{"name":"International Reviews of Immunology","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Lipopolysaccharides derived from gram-negative bacterial pool of human gut microbiota promote inflammation and obesity development.\",\"authors\":\"Liyu Du,&nbsp;Xi Lei,&nbsp;Jie Wang,&nbsp;Li Wang,&nbsp;Qingping Zhong,&nbsp;Xiang Fang,&nbsp;Pan Li,&nbsp;Bing Du,&nbsp;Yutao Wang,&nbsp;Zhenlin Liao\",\"doi\":\"10.1080/08830185.2021.1996573\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Lipopolysaccharide (LPS) is the major component of the outer membrane of Gram-negative bacteria. It is found from intestinal microbes in the circulatory system and considered a trigger factor for low-grade inflammation in obesity. High-fat diet intake and its related obesity can cause gut microbiota disorder, leading to increased gut permeability, paracellular absorption and transcellular transport of endogenous endotoxin in the cardiovascular system. High-fat diet intake can also increase plasma LPS levels, and causing chronic or \\\"low-grade\\\" inflammation. In this review article, we summarize the recent research advancements on the mechanism of low-grade inflammation and its related obesity. We also propose several approaches that can be used to reduce endogenous endotoxin absorption.Supplemental data for this article is available online at https://doi.org/10.1080/08830185.2021.1996573 .</p>\",\"PeriodicalId\":14333,\"journal\":{\"name\":\"International Reviews of Immunology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Reviews of Immunology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/08830185.2021.1996573\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/11/2 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Reviews of Immunology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/08830185.2021.1996573","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/11/2 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 14

摘要

脂多糖(LPS)是革兰氏阴性菌外膜的主要成分。它是从循环系统中的肠道微生物中发现的,被认为是肥胖中低度炎症的触发因素。高脂肪饮食摄入及其相关的肥胖可引起肠道菌群紊乱,导致内源性内毒素在心血管系统的肠道通透性、细胞旁吸收和跨细胞转运增加。高脂肪饮食摄入也会增加血浆脂多糖水平,引起慢性或“低度”炎症。本文就低度炎症及其相关肥胖机制的研究进展作一综述。我们还提出了几种可用于减少内源性内毒素吸收的方法。本文的补充数据可在https://doi.org/10.1080/08830185.2021.1996573上在线获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Lipopolysaccharides derived from gram-negative bacterial pool of human gut microbiota promote inflammation and obesity development.

Lipopolysaccharide (LPS) is the major component of the outer membrane of Gram-negative bacteria. It is found from intestinal microbes in the circulatory system and considered a trigger factor for low-grade inflammation in obesity. High-fat diet intake and its related obesity can cause gut microbiota disorder, leading to increased gut permeability, paracellular absorption and transcellular transport of endogenous endotoxin in the cardiovascular system. High-fat diet intake can also increase plasma LPS levels, and causing chronic or "low-grade" inflammation. In this review article, we summarize the recent research advancements on the mechanism of low-grade inflammation and its related obesity. We also propose several approaches that can be used to reduce endogenous endotoxin absorption.Supplemental data for this article is available online at https://doi.org/10.1080/08830185.2021.1996573 .

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
11.00
自引率
4.00%
发文量
24
期刊介绍: This review journal provides the most current information on basic and translational research in immunology and related fields. In addition to invited reviews, the journal accepts for publication articles and editorials on relevant topics proposed by contributors. Each issue of International Reviews of Immunology contains both solicited and unsolicited review articles, editorials, and ''In-this-Issue'' highlights. The journal also hosts reviews that position the authors'' original work relative to advances in a given field, bridging the gap between annual reviews and the original research articles. This review series is relevant to all immunologists, molecular biologists, microbiologists, translational scientists, industry researchers, and physicians who work in basic and clinical immunology, inflammatory and allergic diseases, vaccines, and additional topics relevant to medical research and drug development that connect immunology to disciplines such as oncology, cardiovascular disease, and metabolic disorders. Covered in International Reviews of Immunology: Basic and developmental immunology (innate and adaptive immunity; inflammation; and tumor and microbial immunology); Clinical research (mechanisms of disease in man pertaining to infectious diseases, autoimmunity, allergy, oncology / immunology); and Translational research (relevant to biomarkers, diagnostics, vaccines, and drug development).
期刊最新文献
Understanding innate and adaptive responses during radiation combined burn injuries. The molecular landscape of T cell exhaustion in the tumor microenvironment and reinvigoration strategies. STAT4 and STAT6, their role in cellular and humoral immunity and in diverse human diseases. Single-cell RNA sequencing of peripheral blood mononuclear cells from pregnant women with Systemic lupus erythematosus. Vaccine design and development: Exploring the interface with computational biology and AI.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1