{"title":"基于遗传规划的高维非平衡二值分类多准则适合度评价与选择","authors":"Wenbin Pei;Bing Xue;Lin Shang;Mengjie Zhang","doi":"10.1162/evco_a_00304","DOIUrl":null,"url":null,"abstract":"High-dimensional unbalanced classification is challenging because of the joint effects of high dimensionality and class imbalance. Genetic programming (GP) has the potential benefits for use in high-dimensional classification due to its built-in capability to select informative features. However, once data are not evenly distributed, GP tends to develop biased classifiers which achieve a high accuracy on the majority class but a low accuracy on the minority class. Unfortunately, the minority class is often at least as important as the majority class. It is of importance to investigate how GP can be effectively utilized for high-dimensional unbalanced classification. In this article, to address the performance bias issue of GP, a new two-criterion fitness function is developed, which considers two criteria, that is, the approximation of area under the curve (AUC) and the classification clarity (i.e., how well a program can separate two classes). The obtained values on the two criteria are combined in pairs, instead of summing them together. Furthermore, this article designs a three-criterion tournament selection to effectively identify and select good programs to be used by genetic operators for generating offspring during the evolutionary learning process. The experimental results show that the proposed method achieves better classification performance than other compared methods.","PeriodicalId":50470,"journal":{"name":"Evolutionary Computation","volume":"30 1","pages":"99-129"},"PeriodicalIF":4.6000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"High-Dimensional Unbalanced Binary Classification by Genetic Programming with Multi-Criterion Fitness Evaluation and Selection\",\"authors\":\"Wenbin Pei;Bing Xue;Lin Shang;Mengjie Zhang\",\"doi\":\"10.1162/evco_a_00304\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High-dimensional unbalanced classification is challenging because of the joint effects of high dimensionality and class imbalance. Genetic programming (GP) has the potential benefits for use in high-dimensional classification due to its built-in capability to select informative features. However, once data are not evenly distributed, GP tends to develop biased classifiers which achieve a high accuracy on the majority class but a low accuracy on the minority class. Unfortunately, the minority class is often at least as important as the majority class. It is of importance to investigate how GP can be effectively utilized for high-dimensional unbalanced classification. In this article, to address the performance bias issue of GP, a new two-criterion fitness function is developed, which considers two criteria, that is, the approximation of area under the curve (AUC) and the classification clarity (i.e., how well a program can separate two classes). The obtained values on the two criteria are combined in pairs, instead of summing them together. Furthermore, this article designs a three-criterion tournament selection to effectively identify and select good programs to be used by genetic operators for generating offspring during the evolutionary learning process. The experimental results show that the proposed method achieves better classification performance than other compared methods.\",\"PeriodicalId\":50470,\"journal\":{\"name\":\"Evolutionary Computation\",\"volume\":\"30 1\",\"pages\":\"99-129\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2022-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Evolutionary Computation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/9808262/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolutionary Computation","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/9808262/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
High-Dimensional Unbalanced Binary Classification by Genetic Programming with Multi-Criterion Fitness Evaluation and Selection
High-dimensional unbalanced classification is challenging because of the joint effects of high dimensionality and class imbalance. Genetic programming (GP) has the potential benefits for use in high-dimensional classification due to its built-in capability to select informative features. However, once data are not evenly distributed, GP tends to develop biased classifiers which achieve a high accuracy on the majority class but a low accuracy on the minority class. Unfortunately, the minority class is often at least as important as the majority class. It is of importance to investigate how GP can be effectively utilized for high-dimensional unbalanced classification. In this article, to address the performance bias issue of GP, a new two-criterion fitness function is developed, which considers two criteria, that is, the approximation of area under the curve (AUC) and the classification clarity (i.e., how well a program can separate two classes). The obtained values on the two criteria are combined in pairs, instead of summing them together. Furthermore, this article designs a three-criterion tournament selection to effectively identify and select good programs to be used by genetic operators for generating offspring during the evolutionary learning process. The experimental results show that the proposed method achieves better classification performance than other compared methods.
期刊介绍:
Evolutionary Computation is a leading journal in its field. It provides an international forum for facilitating and enhancing the exchange of information among researchers involved in both the theoretical and practical aspects of computational systems drawing their inspiration from nature, with particular emphasis on evolutionary models of computation such as genetic algorithms, evolutionary strategies, classifier systems, evolutionary programming, and genetic programming. It welcomes articles from related fields such as swarm intelligence (e.g. Ant Colony Optimization and Particle Swarm Optimization), and other nature-inspired computation paradigms (e.g. Artificial Immune Systems). As well as publishing articles describing theoretical and/or experimental work, the journal also welcomes application-focused papers describing breakthrough results in an application domain or methodological papers where the specificities of the real-world problem led to significant algorithmic improvements that could possibly be generalized to other areas.