{"title":"中国工业遗产土壤重金属污染及其健康风险评价","authors":"Jing-Yu Peng, Shuai Zhang, Yingyu Han, Bate Bate, Han Ke, Yunmin Chen","doi":"10.1016/j.scitotenv.2021.151632","DOIUrl":null,"url":null,"abstract":"<p><p>Rapid urbanization in China has brought about large-scale factory relocation. Severe environmental ecological and human health risks are caused by a large number of contaminated legacies left in the city. To comprehensively review the pollution and assess the health risk of industrial legacies in China, a total of 625 polluted industrial legacies were compiled by document retrieval. Legacies are mainly located in the southwest of China, the North China Plain, Yangtze River Basin, Yangtze River Delta, and Pearl River Delta with a mean operation time of 35 years, and legacies of chemical manufacturing take the biggest proportion of all sites. Health risk assessments considering the uncertainty of exposure and toxic factors reveal that the soil heavy metal pollution in China is serious, with Pb, Cd, Zn, Ni, and As as dominant pollutants. Legacies of chemical manufacturing, ferrous metal processing, non-ferrous metal processing, and mines should be priority controlled for their large number and serious risks. Children are the most vulnerable people with more serious non-carcinogenic and carcinogenic risks, while males are slightly surpassed by females. Insights for better risk management of legacies are provided based on the comprehensive assessment of pollution and human health risk in this study.</p>","PeriodicalId":422,"journal":{"name":"Science of the Total Environment","volume":null,"pages":null},"PeriodicalIF":8.2000,"publicationDate":"2022-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"59","resultStr":"{\"title\":\"Soil heavy metal pollution of industrial legacies in China and health risk assessment.\",\"authors\":\"Jing-Yu Peng, Shuai Zhang, Yingyu Han, Bate Bate, Han Ke, Yunmin Chen\",\"doi\":\"10.1016/j.scitotenv.2021.151632\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Rapid urbanization in China has brought about large-scale factory relocation. Severe environmental ecological and human health risks are caused by a large number of contaminated legacies left in the city. To comprehensively review the pollution and assess the health risk of industrial legacies in China, a total of 625 polluted industrial legacies were compiled by document retrieval. Legacies are mainly located in the southwest of China, the North China Plain, Yangtze River Basin, Yangtze River Delta, and Pearl River Delta with a mean operation time of 35 years, and legacies of chemical manufacturing take the biggest proportion of all sites. Health risk assessments considering the uncertainty of exposure and toxic factors reveal that the soil heavy metal pollution in China is serious, with Pb, Cd, Zn, Ni, and As as dominant pollutants. Legacies of chemical manufacturing, ferrous metal processing, non-ferrous metal processing, and mines should be priority controlled for their large number and serious risks. Children are the most vulnerable people with more serious non-carcinogenic and carcinogenic risks, while males are slightly surpassed by females. Insights for better risk management of legacies are provided based on the comprehensive assessment of pollution and human health risk in this study.</p>\",\"PeriodicalId\":422,\"journal\":{\"name\":\"Science of the Total Environment\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2022-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"59\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science of the Total Environment\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1016/j.scitotenv.2021.151632\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/11/13 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of the Total Environment","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.scitotenv.2021.151632","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/11/13 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Soil heavy metal pollution of industrial legacies in China and health risk assessment.
Rapid urbanization in China has brought about large-scale factory relocation. Severe environmental ecological and human health risks are caused by a large number of contaminated legacies left in the city. To comprehensively review the pollution and assess the health risk of industrial legacies in China, a total of 625 polluted industrial legacies were compiled by document retrieval. Legacies are mainly located in the southwest of China, the North China Plain, Yangtze River Basin, Yangtze River Delta, and Pearl River Delta with a mean operation time of 35 years, and legacies of chemical manufacturing take the biggest proportion of all sites. Health risk assessments considering the uncertainty of exposure and toxic factors reveal that the soil heavy metal pollution in China is serious, with Pb, Cd, Zn, Ni, and As as dominant pollutants. Legacies of chemical manufacturing, ferrous metal processing, non-ferrous metal processing, and mines should be priority controlled for their large number and serious risks. Children are the most vulnerable people with more serious non-carcinogenic and carcinogenic risks, while males are slightly surpassed by females. Insights for better risk management of legacies are provided based on the comprehensive assessment of pollution and human health risk in this study.
期刊介绍:
The Science of the Total Environment is an international journal dedicated to scientific research on the environment and its interaction with humanity. It covers a wide range of disciplines and seeks to publish innovative, hypothesis-driven, and impactful research that explores the entire environment, including the atmosphere, lithosphere, hydrosphere, biosphere, and anthroposphere.
The journal's updated Aims & Scope emphasizes the importance of interdisciplinary environmental research with broad impact. Priority is given to studies that advance fundamental understanding and explore the interconnectedness of multiple environmental spheres. Field studies are preferred, while laboratory experiments must demonstrate significant methodological advancements or mechanistic insights with direct relevance to the environment.