{"title":"利用机器学习算法比较雷伊复杂图形的 RCF 评分系统与临床决策。","authors":"Chanda Simfukwe, Seong Soo An, Young Chul Youn","doi":"10.12779/dnd.2021.20.4.70","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and purpose: </strong>Interpreting the Rey complex figure (RCF) requires a standard RCF scoring system and clinical decision by clinicians. The interpretation of RCF using clinical decision by clinicians might not be accurate in the diagnosing of mild cognitive impairment (MCI) or dementia patients in comparison with the RCF scoring system. For this reason, a machine-learning algorithm was used to demonstrate that scoring RCF using clinical decision is not as accurate as of the RCF scoring system in predicting MCI or mild dementia patients from normal subjects.</p><p><strong>Methods: </strong>The RCF dataset consisted of 2,232 subjects with formal neuropsychological assessments. The RCF dataset was classified into 2 datasets. The first dataset was to compare normal vs. abnormal and the second dataset was to compare normal vs. MCI vs. mild dementia. Models were trained using a convolutional neural network for machine learning. Receiver operating characteristic curves were used to compare the sensitivity, specificity, and area under the curve (AUC) of models.</p><p><strong>Results: </strong>The trained model's accuracy for predicting cognitive states was 96% with the first dataset (normal vs. abnormal) and 88% with the second dataset (normal vs. MCI vs. mild dementia). The model had a sensitivity of 85% for detecting abnormal with an AUC of 0.847 with the first dataset. It had a sensitivity of 78% for detecting MCI or mild dementia with an AUC of 0.778 with the second dataset.</p><p><strong>Conclusions: </strong>Based on this study, the RCF scoring system has the potential to present more accurate criteria than the clinical decision for distinguishing cognitive impairment among patients.</p>","PeriodicalId":72779,"journal":{"name":"Dementia and neurocognitive disorders","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/1d/dc/dnd-20-70.PMC8585537.pdf","citationCount":"0","resultStr":"{\"title\":\"Comparison of RCF Scoring System to Clinical Decision for the Rey Complex Figure Using Machine-Learning Algorithm.\",\"authors\":\"Chanda Simfukwe, Seong Soo An, Young Chul Youn\",\"doi\":\"10.12779/dnd.2021.20.4.70\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background and purpose: </strong>Interpreting the Rey complex figure (RCF) requires a standard RCF scoring system and clinical decision by clinicians. The interpretation of RCF using clinical decision by clinicians might not be accurate in the diagnosing of mild cognitive impairment (MCI) or dementia patients in comparison with the RCF scoring system. For this reason, a machine-learning algorithm was used to demonstrate that scoring RCF using clinical decision is not as accurate as of the RCF scoring system in predicting MCI or mild dementia patients from normal subjects.</p><p><strong>Methods: </strong>The RCF dataset consisted of 2,232 subjects with formal neuropsychological assessments. The RCF dataset was classified into 2 datasets. The first dataset was to compare normal vs. abnormal and the second dataset was to compare normal vs. MCI vs. mild dementia. Models were trained using a convolutional neural network for machine learning. Receiver operating characteristic curves were used to compare the sensitivity, specificity, and area under the curve (AUC) of models.</p><p><strong>Results: </strong>The trained model's accuracy for predicting cognitive states was 96% with the first dataset (normal vs. abnormal) and 88% with the second dataset (normal vs. MCI vs. mild dementia). The model had a sensitivity of 85% for detecting abnormal with an AUC of 0.847 with the first dataset. It had a sensitivity of 78% for detecting MCI or mild dementia with an AUC of 0.778 with the second dataset.</p><p><strong>Conclusions: </strong>Based on this study, the RCF scoring system has the potential to present more accurate criteria than the clinical decision for distinguishing cognitive impairment among patients.</p>\",\"PeriodicalId\":72779,\"journal\":{\"name\":\"Dementia and neurocognitive disorders\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/1d/dc/dnd-20-70.PMC8585537.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Dementia and neurocognitive disorders\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12779/dnd.2021.20.4.70\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/10/31 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dementia and neurocognitive disorders","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12779/dnd.2021.20.4.70","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/10/31 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Comparison of RCF Scoring System to Clinical Decision for the Rey Complex Figure Using Machine-Learning Algorithm.
Background and purpose: Interpreting the Rey complex figure (RCF) requires a standard RCF scoring system and clinical decision by clinicians. The interpretation of RCF using clinical decision by clinicians might not be accurate in the diagnosing of mild cognitive impairment (MCI) or dementia patients in comparison with the RCF scoring system. For this reason, a machine-learning algorithm was used to demonstrate that scoring RCF using clinical decision is not as accurate as of the RCF scoring system in predicting MCI or mild dementia patients from normal subjects.
Methods: The RCF dataset consisted of 2,232 subjects with formal neuropsychological assessments. The RCF dataset was classified into 2 datasets. The first dataset was to compare normal vs. abnormal and the second dataset was to compare normal vs. MCI vs. mild dementia. Models were trained using a convolutional neural network for machine learning. Receiver operating characteristic curves were used to compare the sensitivity, specificity, and area under the curve (AUC) of models.
Results: The trained model's accuracy for predicting cognitive states was 96% with the first dataset (normal vs. abnormal) and 88% with the second dataset (normal vs. MCI vs. mild dementia). The model had a sensitivity of 85% for detecting abnormal with an AUC of 0.847 with the first dataset. It had a sensitivity of 78% for detecting MCI or mild dementia with an AUC of 0.778 with the second dataset.
Conclusions: Based on this study, the RCF scoring system has the potential to present more accurate criteria than the clinical decision for distinguishing cognitive impairment among patients.