增强息肉检测:结肠镜成像的技术进展。

IF 3 4区 医学 Q1 Medicine Translational gastroenterology and hepatology Pub Date : 2021-10-25 eCollection Date: 2021-01-01 DOI:10.21037/tgh.2020.02.05
Antonio Lee, Nicholas Tutticci
{"title":"增强息肉检测:结肠镜成像的技术进展。","authors":"Antonio Lee,&nbsp;Nicholas Tutticci","doi":"10.21037/tgh.2020.02.05","DOIUrl":null,"url":null,"abstract":"<p><p>The detection and removal of polyps at colonoscopy is core to the current colorectal cancer (CRC) prevention strategy. However, colonoscopy is flawed with a well described miss rate and variability in detection rates associated with incomplete protection from CRC. Consequently, there is significant interest in techniques and technologies which increase polyp detection with the aim to remedy colonoscopy's ills. Technologic advances in colonoscope imaging are numerous and include; increased definition of imaging, widening field of view, virtual technologies to supplant conventional chromocolonoscopy (CC) and now computer assisted detection. However, despite nearly two decades of technologic advances, data on gains in detection from individual technologies have been modest at best and heterogenous and conflicted as a rule. This state of detection technology science is exacerbated by use of relatively blunt metrics of improvement without consensus, the myopic search for gains over single generations of technology improvement and an unhealthy focus on adenomatous lesions. Yet there remains cause for optimism as detection gains from new technology, while small, may still improve CRC prevention. The technologies are also readily available in current generation colonoscopes and have roles beyond simply detection such as lesion characterization, further improving their worth. Coupled with the imminent expansion of computer assisted detection the detection future from colonoscope imaging advances looks bright. This review aims to cover the major imaging advances and evidence for improvement in polyp detection.</p>","PeriodicalId":23267,"journal":{"name":"Translational gastroenterology and hepatology","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2021-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8573375/pdf/tgh-06-2020.02.05.pdf","citationCount":"2","resultStr":"{\"title\":\"Enhancing polyp detection: technological advances in colonoscopy imaging.\",\"authors\":\"Antonio Lee,&nbsp;Nicholas Tutticci\",\"doi\":\"10.21037/tgh.2020.02.05\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The detection and removal of polyps at colonoscopy is core to the current colorectal cancer (CRC) prevention strategy. However, colonoscopy is flawed with a well described miss rate and variability in detection rates associated with incomplete protection from CRC. Consequently, there is significant interest in techniques and technologies which increase polyp detection with the aim to remedy colonoscopy's ills. Technologic advances in colonoscope imaging are numerous and include; increased definition of imaging, widening field of view, virtual technologies to supplant conventional chromocolonoscopy (CC) and now computer assisted detection. However, despite nearly two decades of technologic advances, data on gains in detection from individual technologies have been modest at best and heterogenous and conflicted as a rule. This state of detection technology science is exacerbated by use of relatively blunt metrics of improvement without consensus, the myopic search for gains over single generations of technology improvement and an unhealthy focus on adenomatous lesions. Yet there remains cause for optimism as detection gains from new technology, while small, may still improve CRC prevention. The technologies are also readily available in current generation colonoscopes and have roles beyond simply detection such as lesion characterization, further improving their worth. Coupled with the imminent expansion of computer assisted detection the detection future from colonoscope imaging advances looks bright. This review aims to cover the major imaging advances and evidence for improvement in polyp detection.</p>\",\"PeriodicalId\":23267,\"journal\":{\"name\":\"Translational gastroenterology and hepatology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2021-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8573375/pdf/tgh-06-2020.02.05.pdf\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Translational gastroenterology and hepatology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.21037/tgh.2020.02.05\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Translational gastroenterology and hepatology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.21037/tgh.2020.02.05","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 2

摘要

结肠镜下息肉的发现和切除是当前结直肠癌预防策略的核心。然而,结肠镜检查是有缺陷的,漏检率和检出率的变异性与CRC的不完全保护有关。因此,有显著的兴趣技术和技术,以增加息肉的检测,目的是补救结肠镜的疾病。结肠镜成像的技术进步很多,包括;提高成像清晰度,扩大视野,虚拟技术取代传统的彩色结肠镜检查(CC)和现在的计算机辅助检测。然而,尽管技术取得了近二十年的进步,但个别技术在检测方面取得的进展的数据充其量是有限的,而且通常是不同的和相互矛盾的。检测技术科学的这种状态由于使用相对钝钝的没有共识的改进指标、对单代技术改进的短视追求以及对腺瘤病变的不健康关注而加剧。然而,我们仍然有理由乐观,因为新技术的检测收益虽然很小,但仍可能改善结直肠癌的预防。这些技术在当代结肠镜中也很容易获得,并且除了简单地检测病变特征外,还具有其他作用,进一步提高了它们的价值。再加上计算机辅助检测的即将扩展,结肠镜成像的检测前景看起来很光明。这篇综述旨在涵盖主要的影像学进展和证据,以改善息肉的检测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enhancing polyp detection: technological advances in colonoscopy imaging.

The detection and removal of polyps at colonoscopy is core to the current colorectal cancer (CRC) prevention strategy. However, colonoscopy is flawed with a well described miss rate and variability in detection rates associated with incomplete protection from CRC. Consequently, there is significant interest in techniques and technologies which increase polyp detection with the aim to remedy colonoscopy's ills. Technologic advances in colonoscope imaging are numerous and include; increased definition of imaging, widening field of view, virtual technologies to supplant conventional chromocolonoscopy (CC) and now computer assisted detection. However, despite nearly two decades of technologic advances, data on gains in detection from individual technologies have been modest at best and heterogenous and conflicted as a rule. This state of detection technology science is exacerbated by use of relatively blunt metrics of improvement without consensus, the myopic search for gains over single generations of technology improvement and an unhealthy focus on adenomatous lesions. Yet there remains cause for optimism as detection gains from new technology, while small, may still improve CRC prevention. The technologies are also readily available in current generation colonoscopes and have roles beyond simply detection such as lesion characterization, further improving their worth. Coupled with the imminent expansion of computer assisted detection the detection future from colonoscope imaging advances looks bright. This review aims to cover the major imaging advances and evidence for improvement in polyp detection.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.20
自引率
0.00%
发文量
1
期刊介绍: Translational Gastroenterology and Hepatology (Transl Gastroenterol Hepatol; TGH; Online ISSN 2415-1289) is an open-access, peer-reviewed online journal that focuses on cutting-edge findings in the field of translational research in gastroenterology and hepatology and provides current and practical information on diagnosis, prevention and clinical investigations of gastrointestinal, pancreas, gallbladder and hepatic diseases. Specific areas of interest include, but not limited to, multimodality therapy, biomarkers, imaging, biology, pathology, and technical advances related to gastrointestinal and hepatic diseases. Contributions pertinent to gastroenterology and hepatology are also included from related fields such as nutrition, surgery, public health, human genetics, basic sciences, education, sociology, and nursing.
期刊最新文献
A fucoidan plant drink reduces Helicobacter pylori load in the stomach: a real-world study Risk of second cancer in esophageal squamous cell carcinoma and adenocarcinoma survivors: a population-based analysis in SEER dataset Application and effectiveness of an improved endoscopically guided nasojejunal tube placement technique in critically ill patients: a retrospective cohort study The real efficacy of microbiota restoration following standard of care antimicrobial in patients with recurrent Clostridiodes difficile Therapeutic advancement in inflammatory bowel disease by incorporating plant-based diet
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1