Cuo Zhou, Shunwei Wu, Shenghui Qi, Weijun Song, Chunyan Sun
{"title":"生物质藜麦皂苷快速高效合成n掺杂碳量子点用于Co2检测。","authors":"Cuo Zhou, Shunwei Wu, Shenghui Qi, Weijun Song, Chunyan Sun","doi":"10.1155/2021/9732364","DOIUrl":null,"url":null,"abstract":"<p><p>Hydrothermal synthesis of carbon quantum dots (CQDs) from natural biomass is a green and sustainable route for CQDs applications in various fields. In this work, the preparation and characterization of CQDs based on quinoa saponin were investigated. The optimum synthetic conditions determined by orthogonal experiments were as follows: 2 g quinoa saponin powder and 0.04 mol ethylenediamine reacted at 200°C for 10 h. The relative fluorescence quantum yield (QY = 22.2%) can be obtained, which is higher than some results reported in the literatures. The prepared CQDs had a small and uniform size (∼2.25 nm) and exhibited excitation wavelength-dependent blue light emission behavior. The CQDs displayed excellent sensitivity for Co<sup>2+</sup> detection along with good linear correlation ranging from 20 to 150 <i>µ</i>M and the detection limit of 0.49 <i>µ</i>M. The CQDs prepared in this experiment were successfully implanted into soybean sprouts for fluorescence imaging. The sprouts could grow healthily even soaked in the CQDs solution for two weeks, demonstrating the low toxicity of the CQDs. The advantages of the CQDs, such as low cost, ease of manufacture, nontoxicity, and stability, have potential applications in many areas such as metal ion detection and biosensing.</p>","PeriodicalId":14974,"journal":{"name":"Journal of Analytical Methods in Chemistry","volume":"2021 ","pages":"9732364"},"PeriodicalIF":2.3000,"publicationDate":"2021-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8718314/pdf/","citationCount":"7","resultStr":"{\"title\":\"Facile and High-yield Synthesis of N-doped Carbon Quantum Dots from Biomass Quinoa Saponin for the Detection of Co<sup>2</sup>.\",\"authors\":\"Cuo Zhou, Shunwei Wu, Shenghui Qi, Weijun Song, Chunyan Sun\",\"doi\":\"10.1155/2021/9732364\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Hydrothermal synthesis of carbon quantum dots (CQDs) from natural biomass is a green and sustainable route for CQDs applications in various fields. In this work, the preparation and characterization of CQDs based on quinoa saponin were investigated. The optimum synthetic conditions determined by orthogonal experiments were as follows: 2 g quinoa saponin powder and 0.04 mol ethylenediamine reacted at 200°C for 10 h. The relative fluorescence quantum yield (QY = 22.2%) can be obtained, which is higher than some results reported in the literatures. The prepared CQDs had a small and uniform size (∼2.25 nm) and exhibited excitation wavelength-dependent blue light emission behavior. The CQDs displayed excellent sensitivity for Co<sup>2+</sup> detection along with good linear correlation ranging from 20 to 150 <i>µ</i>M and the detection limit of 0.49 <i>µ</i>M. The CQDs prepared in this experiment were successfully implanted into soybean sprouts for fluorescence imaging. The sprouts could grow healthily even soaked in the CQDs solution for two weeks, demonstrating the low toxicity of the CQDs. The advantages of the CQDs, such as low cost, ease of manufacture, nontoxicity, and stability, have potential applications in many areas such as metal ion detection and biosensing.</p>\",\"PeriodicalId\":14974,\"journal\":{\"name\":\"Journal of Analytical Methods in Chemistry\",\"volume\":\"2021 \",\"pages\":\"9732364\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2021-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8718314/pdf/\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Analytical Methods in Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1155/2021/9732364\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Analytical Methods in Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1155/2021/9732364","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Facile and High-yield Synthesis of N-doped Carbon Quantum Dots from Biomass Quinoa Saponin for the Detection of Co2.
Hydrothermal synthesis of carbon quantum dots (CQDs) from natural biomass is a green and sustainable route for CQDs applications in various fields. In this work, the preparation and characterization of CQDs based on quinoa saponin were investigated. The optimum synthetic conditions determined by orthogonal experiments were as follows: 2 g quinoa saponin powder and 0.04 mol ethylenediamine reacted at 200°C for 10 h. The relative fluorescence quantum yield (QY = 22.2%) can be obtained, which is higher than some results reported in the literatures. The prepared CQDs had a small and uniform size (∼2.25 nm) and exhibited excitation wavelength-dependent blue light emission behavior. The CQDs displayed excellent sensitivity for Co2+ detection along with good linear correlation ranging from 20 to 150 µM and the detection limit of 0.49 µM. The CQDs prepared in this experiment were successfully implanted into soybean sprouts for fluorescence imaging. The sprouts could grow healthily even soaked in the CQDs solution for two weeks, demonstrating the low toxicity of the CQDs. The advantages of the CQDs, such as low cost, ease of manufacture, nontoxicity, and stability, have potential applications in many areas such as metal ion detection and biosensing.
期刊介绍:
Journal of Analytical Methods in Chemistry publishes papers reporting methods and instrumentation for chemical analysis, and their application to real-world problems. Articles may be either practical or theoretical.
Subject areas include (but are by no means limited to):
Separation
Spectroscopy
Mass spectrometry
Chromatography
Analytical Sample Preparation
Electrochemical analysis
Hyphenated techniques
Data processing
As well as original research, Journal of Analytical Methods in Chemistry also publishes focused review articles that examine the state of the art, identify emerging trends, and suggest future directions for developing fields.