从亚最大肌电图数据估计最大自主等距收缩肌电图价值的方法的发展和评估。

IF 1.1 4区 医学 Q4 ENGINEERING, BIOMEDICAL Journal of Applied Biomechanics Pub Date : 2022-04-01 Epub Date: 2022-02-25 DOI:10.1123/jab.2021-0229
Hamid Norasi, Jordyn Koenig, Gary A Mirka
{"title":"从亚最大肌电图数据估计最大自主等距收缩肌电图价值的方法的发展和评估。","authors":"Hamid Norasi,&nbsp;Jordyn Koenig,&nbsp;Gary A Mirka","doi":"10.1123/jab.2021-0229","DOIUrl":null,"url":null,"abstract":"<p><p>The electromyographic (EMG) normalization (often to maximum voluntary isometric contraction [MVIC]) is used to control for interparticipant and day-to-day variations. Repeated MVIC exertions may be inadvisable from participants' safety perspective. This study developed a technique to predict the MVIC EMG from submaximal isometric voluntary contraction EMG. On day 1, 10 participants executed moment exertions of 100%, 60%, 40%, and 20% of the maximum (biceps brachii, rectus femoris, neck flexors, and neck extensors) as the EMG data were collected. On day 2, the participants replicated the joint moment values from day 1 (60%, 40%, and 20%) and also performed MVIC exertions. Using the ratios between the MVIC EMGs and submaximal isometric voluntary contraction EMG data values established on day 1, and the day 2 submaximal isometric voluntary contraction EMG data values, the day 2 MVIC EMGs were predicted. The average absolute percentage error between the predicted and actual MVIC EMG values for day 2 were calculated: biceps brachii, 45%; rectus femoris, 27%; right and left neck flexors, 27% and 33%, respectively; and right and left neck extensors, both 29%. There will be a trade-off between the required accuracy of the MVIC EMG and the risk of injury due to exerting actual MVIC. Thus, using the developed predictive technique may depend on the study circumstances.</p>","PeriodicalId":54883,"journal":{"name":"Journal of Applied Biomechanics","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Development and Assessment of a Method to Estimate the Value of a Maximum Voluntary Isometric Contraction Electromyogram from Submaximal Electromyographic Data.\",\"authors\":\"Hamid Norasi,&nbsp;Jordyn Koenig,&nbsp;Gary A Mirka\",\"doi\":\"10.1123/jab.2021-0229\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The electromyographic (EMG) normalization (often to maximum voluntary isometric contraction [MVIC]) is used to control for interparticipant and day-to-day variations. Repeated MVIC exertions may be inadvisable from participants' safety perspective. This study developed a technique to predict the MVIC EMG from submaximal isometric voluntary contraction EMG. On day 1, 10 participants executed moment exertions of 100%, 60%, 40%, and 20% of the maximum (biceps brachii, rectus femoris, neck flexors, and neck extensors) as the EMG data were collected. On day 2, the participants replicated the joint moment values from day 1 (60%, 40%, and 20%) and also performed MVIC exertions. Using the ratios between the MVIC EMGs and submaximal isometric voluntary contraction EMG data values established on day 1, and the day 2 submaximal isometric voluntary contraction EMG data values, the day 2 MVIC EMGs were predicted. The average absolute percentage error between the predicted and actual MVIC EMG values for day 2 were calculated: biceps brachii, 45%; rectus femoris, 27%; right and left neck flexors, 27% and 33%, respectively; and right and left neck extensors, both 29%. There will be a trade-off between the required accuracy of the MVIC EMG and the risk of injury due to exerting actual MVIC. Thus, using the developed predictive technique may depend on the study circumstances.</p>\",\"PeriodicalId\":54883,\"journal\":{\"name\":\"Journal of Applied Biomechanics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2022-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Biomechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1123/jab.2021-0229\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/2/25 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Biomechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1123/jab.2021-0229","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/2/25 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 1

摘要

肌电图(EMG)归一化(通常达到最大自愿等距收缩[MVIC])用于控制参与者之间和日常变化。从参与者的安全角度考虑,重复使用MVIC可能是不可取的。本研究发展了一种从次极大等长自发性收缩肌电信号预测中心室肌电信号的技术。在第1天,收集肌电数据时,10名参与者进行了100%、60%、40%和20%的最大力矩(肱二头肌、股直肌、颈屈肌和颈伸肌)。在第2天,参与者复制了第1天的关节力矩值(60%,40%和20%),并进行了MVIC练习。利用第1天的MVIC肌电信号与次极大等距自愿收缩肌电信号的比值,以及第2天的次极大等距自愿收缩肌电信号的比值,预测第2天的MVIC肌电信号。计算第2天MVIC EMG预测值与实际值之间的平均绝对百分比误差:肱二头肌,45%;股直肌,27%;左右颈部屈肌,分别占27%和33%;左右颈部伸肌,都是29%。在MVIC肌电图所要求的准确性和由于施加实际MVIC而造成的损伤风险之间存在权衡。因此,使用已开发的预测技术可能取决于研究环境。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Development and Assessment of a Method to Estimate the Value of a Maximum Voluntary Isometric Contraction Electromyogram from Submaximal Electromyographic Data.

The electromyographic (EMG) normalization (often to maximum voluntary isometric contraction [MVIC]) is used to control for interparticipant and day-to-day variations. Repeated MVIC exertions may be inadvisable from participants' safety perspective. This study developed a technique to predict the MVIC EMG from submaximal isometric voluntary contraction EMG. On day 1, 10 participants executed moment exertions of 100%, 60%, 40%, and 20% of the maximum (biceps brachii, rectus femoris, neck flexors, and neck extensors) as the EMG data were collected. On day 2, the participants replicated the joint moment values from day 1 (60%, 40%, and 20%) and also performed MVIC exertions. Using the ratios between the MVIC EMGs and submaximal isometric voluntary contraction EMG data values established on day 1, and the day 2 submaximal isometric voluntary contraction EMG data values, the day 2 MVIC EMGs were predicted. The average absolute percentage error between the predicted and actual MVIC EMG values for day 2 were calculated: biceps brachii, 45%; rectus femoris, 27%; right and left neck flexors, 27% and 33%, respectively; and right and left neck extensors, both 29%. There will be a trade-off between the required accuracy of the MVIC EMG and the risk of injury due to exerting actual MVIC. Thus, using the developed predictive technique may depend on the study circumstances.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Applied Biomechanics
Journal of Applied Biomechanics 医学-工程:生物医学
CiteScore
2.00
自引率
0.00%
发文量
47
审稿时长
6-12 weeks
期刊介绍: The mission of the Journal of Applied Biomechanics (JAB) is to disseminate the highest quality peer-reviewed studies that utilize biomechanical strategies to advance the study of human movement. Areas of interest include clinical biomechanics, gait and posture mechanics, musculoskeletal and neuromuscular biomechanics, sport mechanics, and biomechanical modeling. Studies of sport performance that explicitly generalize to broader activities, contribute substantially to fundamental understanding of human motion, or are in a sport that enjoys wide participation, are welcome. Also within the scope of JAB are studies using biomechanical strategies to investigate the structure, control, function, and state (health and disease) of animals.
期刊最新文献
Do Experienced Adolescent Competition Dancers Alter Landing Kinematics and Kinetics for Split Leaps or Center Leaps After Fatigue? Effects of Stroboscopic Goggles on Standing Balance in the Spatiotemporal and Frequency Domains: An Exploratory Study. Relationship Between Supporting Leg Stiffness and Trunk Kinematics of the Kicking Leg During Soccer Kicking. The Effects of Running Foot Strike Manipulation on Pelvic Floor Muscle Activity in Healthy Nulliparous Females. Fatigue-Related Changes in Running Technique and Mechanical Variables After a Maximal Incremental Test in Recreational Runners.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1