{"title":"咪唑功能化氧化石墨烯一步接枝提高PVDF超滤膜的抗有机污染和抗菌性能","authors":"Chengbao Geng , Lu-an Fan , Hongyan Niu , Lijia Liu , Fangbo Zhao , Jiaming Zhang , Hongxing Dong , Shuili Yu","doi":"10.1016/j.msec.2021.112517","DOIUrl":null,"url":null,"abstract":"<div><p>At present, membrane fouling is a thorny issue that limits the development of polyvinylidene fluoride (PVDF) composite membrane, which seriously affects its separation performance and service lifespan. Herein, an imidazole-functionalized graphene oxide (Im-GO) with hydrophilicity and antibacterial performance was synthesized, and it was used as a modifier to improve the anti-organic fouling and antibacterial properties of PVDF membrane. The anti-organic fouling test showed that the maximum flux recovery ratios against bovine serum albumin and humic acid were 88.9% and 94.5%, respectively. Conspicuously, the grafted imidazole groups could effectively prevent the bacteria from growing on the membrane surface. It was gratifying that the antibacterial modifier Im-GO was almost not lost from the hybrid membranes even by the ultrasonic treatment, which was different from the conventional release-killing antibacterial agents. Owing to the long-term anti-organic fouling and antibacterial properties, Im-GO/PVDF hybrid membranes exhibit a great application potential in the fields of rough separation and concentration of biomedical products.</p></div>","PeriodicalId":18212,"journal":{"name":"Materials science & engineering. C, Materials for biological applications","volume":"131 ","pages":"Article 112517"},"PeriodicalIF":8.1000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0928493121006573/pdfft?md5=d3363968fbec98994da36bbbe4fdf510&pid=1-s2.0-S0928493121006573-main.pdf","citationCount":"17","resultStr":"{\"title\":\"Improved anti-organic fouling and antibacterial properties of PVDF ultrafiltration membrane by one-step grafting imidazole-functionalized graphene oxide\",\"authors\":\"Chengbao Geng , Lu-an Fan , Hongyan Niu , Lijia Liu , Fangbo Zhao , Jiaming Zhang , Hongxing Dong , Shuili Yu\",\"doi\":\"10.1016/j.msec.2021.112517\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>At present, membrane fouling is a thorny issue that limits the development of polyvinylidene fluoride (PVDF) composite membrane, which seriously affects its separation performance and service lifespan. Herein, an imidazole-functionalized graphene oxide (Im-GO) with hydrophilicity and antibacterial performance was synthesized, and it was used as a modifier to improve the anti-organic fouling and antibacterial properties of PVDF membrane. The anti-organic fouling test showed that the maximum flux recovery ratios against bovine serum albumin and humic acid were 88.9% and 94.5%, respectively. Conspicuously, the grafted imidazole groups could effectively prevent the bacteria from growing on the membrane surface. It was gratifying that the antibacterial modifier Im-GO was almost not lost from the hybrid membranes even by the ultrasonic treatment, which was different from the conventional release-killing antibacterial agents. Owing to the long-term anti-organic fouling and antibacterial properties, Im-GO/PVDF hybrid membranes exhibit a great application potential in the fields of rough separation and concentration of biomedical products.</p></div>\",\"PeriodicalId\":18212,\"journal\":{\"name\":\"Materials science & engineering. C, Materials for biological applications\",\"volume\":\"131 \",\"pages\":\"Article 112517\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0928493121006573/pdfft?md5=d3363968fbec98994da36bbbe4fdf510&pid=1-s2.0-S0928493121006573-main.pdf\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials science & engineering. C, Materials for biological applications\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0928493121006573\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials science & engineering. C, Materials for biological applications","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0928493121006573","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Improved anti-organic fouling and antibacterial properties of PVDF ultrafiltration membrane by one-step grafting imidazole-functionalized graphene oxide
At present, membrane fouling is a thorny issue that limits the development of polyvinylidene fluoride (PVDF) composite membrane, which seriously affects its separation performance and service lifespan. Herein, an imidazole-functionalized graphene oxide (Im-GO) with hydrophilicity and antibacterial performance was synthesized, and it was used as a modifier to improve the anti-organic fouling and antibacterial properties of PVDF membrane. The anti-organic fouling test showed that the maximum flux recovery ratios against bovine serum albumin and humic acid were 88.9% and 94.5%, respectively. Conspicuously, the grafted imidazole groups could effectively prevent the bacteria from growing on the membrane surface. It was gratifying that the antibacterial modifier Im-GO was almost not lost from the hybrid membranes even by the ultrasonic treatment, which was different from the conventional release-killing antibacterial agents. Owing to the long-term anti-organic fouling and antibacterial properties, Im-GO/PVDF hybrid membranes exhibit a great application potential in the fields of rough separation and concentration of biomedical products.
期刊介绍:
Materials Today is a community committed to fostering the creation and sharing of knowledge and experience in materials science. With the support of Elsevier, this community publishes high-impact peer-reviewed journals, organizes academic conferences, and conducts educational webinars, among other initiatives. It serves as a hub for advancing materials science and facilitating collaboration within the scientific community.