磁保留和葡萄糖燃料羟基自由基纳米发电机用于h2o2自供化学动力学治疗伤口感染

IF 8.1 1区 工程技术 Q1 MATERIALS SCIENCE, BIOMATERIALS Materials science & engineering. C, Materials for biological applications Pub Date : 2021-12-01 DOI:10.1016/j.msec.2021.112522
Minhui Gong , Jiayu Xiao , Huan Li , Luo Hai , Ke Yang , Junqin Li , Zefeng Wang , Le Deng , Dinggeng He
{"title":"磁保留和葡萄糖燃料羟基自由基纳米发电机用于h2o2自供化学动力学治疗伤口感染","authors":"Minhui Gong ,&nbsp;Jiayu Xiao ,&nbsp;Huan Li ,&nbsp;Luo Hai ,&nbsp;Ke Yang ,&nbsp;Junqin Li ,&nbsp;Zefeng Wang ,&nbsp;Le Deng ,&nbsp;Dinggeng He","doi":"10.1016/j.msec.2021.112522","DOIUrl":null,"url":null,"abstract":"<div><p>Chemodynamic therapy (CDT) involving the highly toxic hydroxyl radical (<img>OH) has exhibited tremendous potentiality in combating bacterial infection. However, its antibacterial efficacy is still unsatisfactory due to the insufficient H<sub>2</sub>O<sub>2</sub> levels and near neutral pH at infection site. Herein, a glucose-fueled and H<sub>2</sub>O<sub>2</sub>-self-supplying <img>OH nanogenerator (pFe<sub>3</sub>O<sub>4</sub>@GOx) based on cascade catalytic reactions is developed by immobilizing glucose oxidase (GOx) on the surface of PAA-coated Fe<sub>3</sub>O<sub>4</sub> (pFe<sub>3</sub>O<sub>4</sub>). Magnetic pFe<sub>3</sub>O<sub>4</sub> can act as a horseradish peroxidase-like nanozyme, catalyzing the decomposition of H<sub>2</sub>O<sub>2</sub> into <img>OH under acidic conditions for CDT. The immobilized GOx can continuously convert non-toxic glucose into gluconic acid and H<sub>2</sub>O<sub>2</sub>, and the former improves the catalytic activity of pFe<sub>3</sub>O<sub>4</sub> nanozymes by decreasing pH value. The self-supplying H<sub>2</sub>O<sub>2</sub> molecules effectively enhance the <img>OH generation, resulting in the high antibacterial efficacy. <em>In vitro</em> studies demonstrate that the pFe<sub>3</sub>O<sub>4</sub>@GOx conducts well in reducing pH value and improving H<sub>2</sub>O<sub>2</sub> level for self-enhanced CDT. Moreover, the cascade catalytic reaction of pFe<sub>3</sub>O<sub>4</sub> and GOx effectively avoids strong toxicity caused by directly adding high concentrations of H<sub>2</sub>O<sub>2</sub> for CDT. It is worth mentioning that the pFe<sub>3</sub>O<sub>4</sub>@GOx performs highly efficient <em>in vivo</em> CDT of bacteria-infected wound <em>via</em> the localized long-term magnetic retention at infection site and causes minimal toxicity to normal tissues at therapeutic doses. Therefore, the developed glucose-fueled <img>OH nanogenerators are a potential nano-antibacterial agent for the treatment of wound infections.</p></div>","PeriodicalId":18212,"journal":{"name":"Materials science & engineering. C, Materials for biological applications","volume":null,"pages":null},"PeriodicalIF":8.1000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0928493121006627/pdfft?md5=0a9c7c6cff7b62784165710b70807afe&pid=1-s2.0-S0928493121006627-main.pdf","citationCount":"19","resultStr":"{\"title\":\"Magnetically retained and glucose-fueled hydroxyl radical nanogenerators for H2O2-self-supplying chemodynamic therapy of wound infections\",\"authors\":\"Minhui Gong ,&nbsp;Jiayu Xiao ,&nbsp;Huan Li ,&nbsp;Luo Hai ,&nbsp;Ke Yang ,&nbsp;Junqin Li ,&nbsp;Zefeng Wang ,&nbsp;Le Deng ,&nbsp;Dinggeng He\",\"doi\":\"10.1016/j.msec.2021.112522\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Chemodynamic therapy (CDT) involving the highly toxic hydroxyl radical (<img>OH) has exhibited tremendous potentiality in combating bacterial infection. However, its antibacterial efficacy is still unsatisfactory due to the insufficient H<sub>2</sub>O<sub>2</sub> levels and near neutral pH at infection site. Herein, a glucose-fueled and H<sub>2</sub>O<sub>2</sub>-self-supplying <img>OH nanogenerator (pFe<sub>3</sub>O<sub>4</sub>@GOx) based on cascade catalytic reactions is developed by immobilizing glucose oxidase (GOx) on the surface of PAA-coated Fe<sub>3</sub>O<sub>4</sub> (pFe<sub>3</sub>O<sub>4</sub>). Magnetic pFe<sub>3</sub>O<sub>4</sub> can act as a horseradish peroxidase-like nanozyme, catalyzing the decomposition of H<sub>2</sub>O<sub>2</sub> into <img>OH under acidic conditions for CDT. The immobilized GOx can continuously convert non-toxic glucose into gluconic acid and H<sub>2</sub>O<sub>2</sub>, and the former improves the catalytic activity of pFe<sub>3</sub>O<sub>4</sub> nanozymes by decreasing pH value. The self-supplying H<sub>2</sub>O<sub>2</sub> molecules effectively enhance the <img>OH generation, resulting in the high antibacterial efficacy. <em>In vitro</em> studies demonstrate that the pFe<sub>3</sub>O<sub>4</sub>@GOx conducts well in reducing pH value and improving H<sub>2</sub>O<sub>2</sub> level for self-enhanced CDT. Moreover, the cascade catalytic reaction of pFe<sub>3</sub>O<sub>4</sub> and GOx effectively avoids strong toxicity caused by directly adding high concentrations of H<sub>2</sub>O<sub>2</sub> for CDT. It is worth mentioning that the pFe<sub>3</sub>O<sub>4</sub>@GOx performs highly efficient <em>in vivo</em> CDT of bacteria-infected wound <em>via</em> the localized long-term magnetic retention at infection site and causes minimal toxicity to normal tissues at therapeutic doses. Therefore, the developed glucose-fueled <img>OH nanogenerators are a potential nano-antibacterial agent for the treatment of wound infections.</p></div>\",\"PeriodicalId\":18212,\"journal\":{\"name\":\"Materials science & engineering. C, Materials for biological applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0928493121006627/pdfft?md5=0a9c7c6cff7b62784165710b70807afe&pid=1-s2.0-S0928493121006627-main.pdf\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials science & engineering. C, Materials for biological applications\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0928493121006627\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials science & engineering. C, Materials for biological applications","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0928493121006627","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 19

摘要

化学动力疗法(CDT)涉及高毒性羟基自由基(OH)在对抗细菌感染方面显示出巨大的潜力。然而,由于感染部位H2O2水平不足,pH接近中性,其抗菌效果仍不理想。本文通过将葡萄糖氧化酶(GOx)固定在paa包覆的Fe3O4 (pFe3O4)表面,开发了基于级联催化反应的葡萄糖燃料和h2o2自供的OH纳米发电机(pFe3O4@GOx)。磁性pFe3O4可以作为类似辣根过氧化物酶的纳米酶,在酸性条件下催化H2O2分解成OH进行CDT。固定化的GOx可以连续地将无毒葡萄糖转化为葡萄糖酸和H2O2,葡萄糖酸通过降低pH值提高pFe3O4纳米酶的催化活性。自供H2O2分子有效增强OH生成,抗菌效果高。体外研究表明,pFe3O4@GOx在降低pH值和提高H2O2水平方面具有较好的自增强CDT的作用。此外,pFe3O4与GOx的级联催化反应有效避免了直接加入高浓度H2O2对CDT产生的强毒性。值得一提的是,pFe3O4@GOx通过在感染部位的局部长期磁保留,对细菌感染的伤口进行高效的体内CDT,并且在治疗剂量下对正常组织的毒性很小。因此,开发的葡萄糖燃料氢氧根纳米发生器是治疗伤口感染的潜在纳米抗菌剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Magnetically retained and glucose-fueled hydroxyl radical nanogenerators for H2O2-self-supplying chemodynamic therapy of wound infections

Chemodynamic therapy (CDT) involving the highly toxic hydroxyl radical (OH) has exhibited tremendous potentiality in combating bacterial infection. However, its antibacterial efficacy is still unsatisfactory due to the insufficient H2O2 levels and near neutral pH at infection site. Herein, a glucose-fueled and H2O2-self-supplying OH nanogenerator (pFe3O4@GOx) based on cascade catalytic reactions is developed by immobilizing glucose oxidase (GOx) on the surface of PAA-coated Fe3O4 (pFe3O4). Magnetic pFe3O4 can act as a horseradish peroxidase-like nanozyme, catalyzing the decomposition of H2O2 into OH under acidic conditions for CDT. The immobilized GOx can continuously convert non-toxic glucose into gluconic acid and H2O2, and the former improves the catalytic activity of pFe3O4 nanozymes by decreasing pH value. The self-supplying H2O2 molecules effectively enhance the OH generation, resulting in the high antibacterial efficacy. In vitro studies demonstrate that the pFe3O4@GOx conducts well in reducing pH value and improving H2O2 level for self-enhanced CDT. Moreover, the cascade catalytic reaction of pFe3O4 and GOx effectively avoids strong toxicity caused by directly adding high concentrations of H2O2 for CDT. It is worth mentioning that the pFe3O4@GOx performs highly efficient in vivo CDT of bacteria-infected wound via the localized long-term magnetic retention at infection site and causes minimal toxicity to normal tissues at therapeutic doses. Therefore, the developed glucose-fueled OH nanogenerators are a potential nano-antibacterial agent for the treatment of wound infections.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
12.60
自引率
0.00%
发文量
28
审稿时长
3.3 months
期刊介绍: Materials Today is a community committed to fostering the creation and sharing of knowledge and experience in materials science. With the support of Elsevier, this community publishes high-impact peer-reviewed journals, organizes academic conferences, and conducts educational webinars, among other initiatives. It serves as a hub for advancing materials science and facilitating collaboration within the scientific community.
期刊最新文献
Editorial Board Autologous stromal vascular fraction-loaded hyaluronic acid/gelatin-biphasic calcium phosphate scaffold for bone tissue regeneration Construction of multifunctional micro-patterned PALNMA/PDADMAC/PEGDA hydrogel and intelligently responsive antibacterial coating HA/BBR on Mg alloy surface for orthopedic application Machine learning to empower electrohydrodynamic processing Nanoparticles-stacked superhydrophilic coating supported synergistic antimicrobial ability for enhanced wound healing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1