Lamyaa Zelmat, Joseph Mbasani Mansi, Sarra Aouzal, Fatima Gaboun, Slimane Khayi, Mohammed Ibriz, Mohammed El Guilli, Rachid Mentag
{"title":"柑橘黑腐病和褐斑病摩洛哥分离株的遗传多样性和群体结构。","authors":"Lamyaa Zelmat, Joseph Mbasani Mansi, Sarra Aouzal, Fatima Gaboun, Slimane Khayi, Mohammed Ibriz, Mohammed El Guilli, Rachid Mentag","doi":"10.1155/2021/9976969","DOIUrl":null,"url":null,"abstract":"<p><p><i>Alternaria alternata</i> is one of the most important fungi causing various diseases on citrus worldwide. In Morocco, Alternaria black rot (ABR) and Alternaria brown spot (ABS) are two major diseases causing serious losses in commercial cultivars of citrus. The aim of the present work was to study the genetic diversity and the population structure of isolates belonging to sect. <i>Alternaria</i> obtained from infected citrus fruits, collected from seven provinces at different locations in Morocco (markets, packinghouses, and orchards). Forty-five isolates were analyzed by sequence-related amplified polymorphism (SRAP) markers, and cluster analysis of DNA fragments was performed using UPGMA method and Jaccard coefficient. Cluster analysis revealed that isolates were classified in four distinct groups. AMOVA revealed also a large extent of variation within sect. <i>Alternaria</i> isolates (99%). The results demonstrate that no correlation was found among SRAP pattern, host, and geographical origin of these isolates. Population structure analyses showed that the <i>Alternaria</i> isolates from the same collection origin had almost a similar level of admixture.</p>","PeriodicalId":13988,"journal":{"name":"International Journal of Genomics","volume":"2021 ","pages":"9976969"},"PeriodicalIF":2.6000,"publicationDate":"2021-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8632404/pdf/","citationCount":"6","resultStr":"{\"title\":\"Genetic Diversity and Population Structure of Moroccan Isolates Belong to <i>Alternaria</i> spp. Causing Black Rot and Brown Spot in Citrus.\",\"authors\":\"Lamyaa Zelmat, Joseph Mbasani Mansi, Sarra Aouzal, Fatima Gaboun, Slimane Khayi, Mohammed Ibriz, Mohammed El Guilli, Rachid Mentag\",\"doi\":\"10.1155/2021/9976969\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><i>Alternaria alternata</i> is one of the most important fungi causing various diseases on citrus worldwide. In Morocco, Alternaria black rot (ABR) and Alternaria brown spot (ABS) are two major diseases causing serious losses in commercial cultivars of citrus. The aim of the present work was to study the genetic diversity and the population structure of isolates belonging to sect. <i>Alternaria</i> obtained from infected citrus fruits, collected from seven provinces at different locations in Morocco (markets, packinghouses, and orchards). Forty-five isolates were analyzed by sequence-related amplified polymorphism (SRAP) markers, and cluster analysis of DNA fragments was performed using UPGMA method and Jaccard coefficient. Cluster analysis revealed that isolates were classified in four distinct groups. AMOVA revealed also a large extent of variation within sect. <i>Alternaria</i> isolates (99%). The results demonstrate that no correlation was found among SRAP pattern, host, and geographical origin of these isolates. Population structure analyses showed that the <i>Alternaria</i> isolates from the same collection origin had almost a similar level of admixture.</p>\",\"PeriodicalId\":13988,\"journal\":{\"name\":\"International Journal of Genomics\",\"volume\":\"2021 \",\"pages\":\"9976969\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2021-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8632404/pdf/\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Genomics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1155/2021/9976969\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1155/2021/9976969","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Genetic Diversity and Population Structure of Moroccan Isolates Belong to Alternaria spp. Causing Black Rot and Brown Spot in Citrus.
Alternaria alternata is one of the most important fungi causing various diseases on citrus worldwide. In Morocco, Alternaria black rot (ABR) and Alternaria brown spot (ABS) are two major diseases causing serious losses in commercial cultivars of citrus. The aim of the present work was to study the genetic diversity and the population structure of isolates belonging to sect. Alternaria obtained from infected citrus fruits, collected from seven provinces at different locations in Morocco (markets, packinghouses, and orchards). Forty-five isolates were analyzed by sequence-related amplified polymorphism (SRAP) markers, and cluster analysis of DNA fragments was performed using UPGMA method and Jaccard coefficient. Cluster analysis revealed that isolates were classified in four distinct groups. AMOVA revealed also a large extent of variation within sect. Alternaria isolates (99%). The results demonstrate that no correlation was found among SRAP pattern, host, and geographical origin of these isolates. Population structure analyses showed that the Alternaria isolates from the same collection origin had almost a similar level of admixture.
期刊介绍:
International Journal of Genomics is a peer-reviewed, Open Access journal that publishes research articles as well as review articles in all areas of genome-scale analysis. Topics covered by the journal include, but are not limited to: bioinformatics, clinical genomics, disease genomics, epigenomics, evolutionary genomics, functional genomics, genome engineering, and synthetic genomics.