{"title":"人类基因组中L1逆转录活性的比较分析表明,尽管进化趋势趋向于低活性,但L1数量仍在持续增加。","authors":"Sawsan Sami Wehbi, Heinrich Zu Dohna","doi":"10.1186/s13100-021-00255-x","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>LINE-1 (Long Interspersed Nuclear Elements, L1) retrotransposons are the only autonomously active transposable elements in the human genome. The evolution of L1 retrotransposition rates and its implications for L1 dynamics are poorly understood. Retrotransposition rates are commonly measured in cell culture-based assays, but it is unclear how well these measurements provide insight into L1 population dynamics. This study applied comparative methods to estimate parameters for the evolution of retrotransposition rates, and infer L1 dynamics from these estimates.</p><p><strong>Results: </strong>Our results show that the rates at which new L1s emerge in the human population correlate positively to cell-culture based retrotransposition activities, that there is an evolutionary trend towards lower retrotransposition activity, and that this evolutionary trend is not sufficient to counter-balance the increase in active L1s resulting from continuing retrotransposition.</p><p><strong>Conclusions: </strong>Together, these findings support a model of the population-level L1 retrotransposition dynamics that is consistent with prior expectations and indicate the remaining gaps in the understanding of L1 dynamics in human genomes.</p>","PeriodicalId":18854,"journal":{"name":"Mobile DNA","volume":null,"pages":null},"PeriodicalIF":4.7000,"publicationDate":"2021-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8594186/pdf/","citationCount":"0","resultStr":"{\"title\":\"A comparative analysis of L1 retrotransposition activities in human genomes suggests an ongoing increase in L1 number despite an evolutionary trend towards lower activity.\",\"authors\":\"Sawsan Sami Wehbi, Heinrich Zu Dohna\",\"doi\":\"10.1186/s13100-021-00255-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>LINE-1 (Long Interspersed Nuclear Elements, L1) retrotransposons are the only autonomously active transposable elements in the human genome. The evolution of L1 retrotransposition rates and its implications for L1 dynamics are poorly understood. Retrotransposition rates are commonly measured in cell culture-based assays, but it is unclear how well these measurements provide insight into L1 population dynamics. This study applied comparative methods to estimate parameters for the evolution of retrotransposition rates, and infer L1 dynamics from these estimates.</p><p><strong>Results: </strong>Our results show that the rates at which new L1s emerge in the human population correlate positively to cell-culture based retrotransposition activities, that there is an evolutionary trend towards lower retrotransposition activity, and that this evolutionary trend is not sufficient to counter-balance the increase in active L1s resulting from continuing retrotransposition.</p><p><strong>Conclusions: </strong>Together, these findings support a model of the population-level L1 retrotransposition dynamics that is consistent with prior expectations and indicate the remaining gaps in the understanding of L1 dynamics in human genomes.</p>\",\"PeriodicalId\":18854,\"journal\":{\"name\":\"Mobile DNA\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2021-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8594186/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mobile DNA\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s13100-021-00255-x\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mobile DNA","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13100-021-00255-x","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
A comparative analysis of L1 retrotransposition activities in human genomes suggests an ongoing increase in L1 number despite an evolutionary trend towards lower activity.
Background: LINE-1 (Long Interspersed Nuclear Elements, L1) retrotransposons are the only autonomously active transposable elements in the human genome. The evolution of L1 retrotransposition rates and its implications for L1 dynamics are poorly understood. Retrotransposition rates are commonly measured in cell culture-based assays, but it is unclear how well these measurements provide insight into L1 population dynamics. This study applied comparative methods to estimate parameters for the evolution of retrotransposition rates, and infer L1 dynamics from these estimates.
Results: Our results show that the rates at which new L1s emerge in the human population correlate positively to cell-culture based retrotransposition activities, that there is an evolutionary trend towards lower retrotransposition activity, and that this evolutionary trend is not sufficient to counter-balance the increase in active L1s resulting from continuing retrotransposition.
Conclusions: Together, these findings support a model of the population-level L1 retrotransposition dynamics that is consistent with prior expectations and indicate the remaining gaps in the understanding of L1 dynamics in human genomes.
期刊介绍:
Mobile DNA is an online, peer-reviewed, open access journal that publishes articles providing novel insights into DNA rearrangements in all organisms, ranging from transposition and other types of recombination mechanisms to patterns and processes of mobile element and host genome evolution. In addition, the journal will consider articles on the utility of mobile genetic elements in biotechnological methods and protocols.