用于亲和性估计的无监督随机森林。

IF 17.3 3区 计算机科学 Q1 COMPUTER SCIENCE, SOFTWARE ENGINEERING Computational Visual Media Pub Date : 2022-01-01 Epub Date: 2021-12-06 DOI:10.1007/s41095-021-0241-9
Yunai Yi, Diya Sun, Peixin Li, Tae-Kyun Kim, Tianmin Xu, Yuru Pei
{"title":"用于亲和性估计的无监督随机森林。","authors":"Yunai Yi, Diya Sun, Peixin Li, Tae-Kyun Kim, Tianmin Xu, Yuru Pei","doi":"10.1007/s41095-021-0241-9","DOIUrl":null,"url":null,"abstract":"<p><p>This paper presents an unsupervised clustering random-forest-based metric for affinity estimation in large and high-dimensional data. The criterion used for node splitting during forest construction can handle rank-deficiency when measuring cluster compactness. The binary forest-based metric is extended to continuous metrics by exploiting both the common traversal path and the smallest shared parent node. The proposed forest-based metric efficiently estimates affinity by passing down data pairs in the forest using a limited number of decision trees. A pseudo-leaf-splitting (PLS) algorithm is introduced to account for spatial relationships, which regularizes affinity measures and overcomes inconsistent leaf assign-ments. The random-forest-based metric with PLS facilitates the establishment of consistent and point-wise correspondences. The proposed method has been applied to automatic phrase recognition using color and depth videos and point-wise correspondence. Extensive experiments demonstrate the effectiveness of the proposed method in affinity estimation in a comparison with the state-of-the-art.</p>","PeriodicalId":37301,"journal":{"name":"Computational Visual Media","volume":"8 2","pages":"257-272"},"PeriodicalIF":17.3000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8645415/pdf/","citationCount":"0","resultStr":"{\"title\":\"Unsupervised random forest for affinity estimation.\",\"authors\":\"Yunai Yi, Diya Sun, Peixin Li, Tae-Kyun Kim, Tianmin Xu, Yuru Pei\",\"doi\":\"10.1007/s41095-021-0241-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This paper presents an unsupervised clustering random-forest-based metric for affinity estimation in large and high-dimensional data. The criterion used for node splitting during forest construction can handle rank-deficiency when measuring cluster compactness. The binary forest-based metric is extended to continuous metrics by exploiting both the common traversal path and the smallest shared parent node. The proposed forest-based metric efficiently estimates affinity by passing down data pairs in the forest using a limited number of decision trees. A pseudo-leaf-splitting (PLS) algorithm is introduced to account for spatial relationships, which regularizes affinity measures and overcomes inconsistent leaf assign-ments. The random-forest-based metric with PLS facilitates the establishment of consistent and point-wise correspondences. The proposed method has been applied to automatic phrase recognition using color and depth videos and point-wise correspondence. Extensive experiments demonstrate the effectiveness of the proposed method in affinity estimation in a comparison with the state-of-the-art.</p>\",\"PeriodicalId\":37301,\"journal\":{\"name\":\"Computational Visual Media\",\"volume\":\"8 2\",\"pages\":\"257-272\"},\"PeriodicalIF\":17.3000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8645415/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Visual Media\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s41095-021-0241-9\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/12/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Visual Media","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s41095-021-0241-9","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/12/6 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种基于无监督聚类随机森林的度量方法,用于大型高维数据的亲和性估计。在森林构建过程中,用于节点拆分的标准可以在测量聚类紧凑性时处理秩缺陷。通过利用共同遍历路径和最小共享父节点,基于森林的二元度量被扩展到连续度量。通过使用数量有限的决策树在森林中向下传递数据对,所提出的基于森林的度量方法能有效地估计亲和性。为了考虑空间关系,引入了一种伪树叶分割(PLS)算法,该算法对亲和度度量进行了正则化处理,并克服了树叶分配不一致的问题。带有 PLS 的基于随机森林的度量有助于建立一致的点对点对应关系。所提出的方法已被应用于利用彩色和深度视频以及点对应关系进行短语自动识别。通过与最先进的方法进行比较,大量的实验证明了所提出的方法在亲和性估计方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Unsupervised random forest for affinity estimation.

This paper presents an unsupervised clustering random-forest-based metric for affinity estimation in large and high-dimensional data. The criterion used for node splitting during forest construction can handle rank-deficiency when measuring cluster compactness. The binary forest-based metric is extended to continuous metrics by exploiting both the common traversal path and the smallest shared parent node. The proposed forest-based metric efficiently estimates affinity by passing down data pairs in the forest using a limited number of decision trees. A pseudo-leaf-splitting (PLS) algorithm is introduced to account for spatial relationships, which regularizes affinity measures and overcomes inconsistent leaf assign-ments. The random-forest-based metric with PLS facilitates the establishment of consistent and point-wise correspondences. The proposed method has been applied to automatic phrase recognition using color and depth videos and point-wise correspondence. Extensive experiments demonstrate the effectiveness of the proposed method in affinity estimation in a comparison with the state-of-the-art.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computational Visual Media
Computational Visual Media Computer Science-Computer Graphics and Computer-Aided Design
CiteScore
16.90
自引率
5.80%
发文量
243
审稿时长
6 weeks
期刊介绍: Computational Visual Media is a peer-reviewed open access journal. It publishes original high-quality research papers and significant review articles on novel ideas, methods, and systems relevant to visual media. Computational Visual Media publishes articles that focus on, but are not limited to, the following areas: • Editing and composition of visual media • Geometric computing for images and video • Geometry modeling and processing • Machine learning for visual media • Physically based animation • Realistic rendering • Recognition and understanding of visual media • Visual computing for robotics • Visualization and visual analytics Other interdisciplinary research into visual media that combines aspects of computer graphics, computer vision, image and video processing, geometric computing, and machine learning is also within the journal''s scope. This is an open access journal, published quarterly by Tsinghua University Press and Springer. The open access fees (article-processing charges) are fully sponsored by Tsinghua University, China. Authors can publish in the journal without any additional charges.
期刊最新文献
Real-time distance field acceleration based free-viewpoint video synthesis for large sports fields Dynamic ocean inverse modeling based on differentiable rendering Controllable multi-domain semantic artwork synthesis Benchmarking visual SLAM methods in mirror environments Multi-modal visual tracking: Review and experimental comparison
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1