SARS-CoV-2的宿主操纵机制

IF 1.4 4区 生物学 Q4 MATHEMATICAL & COMPUTATIONAL BIOLOGY Acta Biotheoretica Pub Date : 2021-12-13 DOI:10.1007/s10441-021-09425-z
Steven E. Massey
{"title":"SARS-CoV-2的宿主操纵机制","authors":"Steven E. Massey","doi":"10.1007/s10441-021-09425-z","DOIUrl":null,"url":null,"abstract":"<div><p>Viruses are the simplest of pathogens, but possess sophisticated molecular mechanisms to manipulate host behavior, frequently utilizing molecular mimicry. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been shown to bind to the host receptor neuropilin-1 in order to gain entry into the cell. To do this, the virus utilizes its spike protein polybasic cleavage site (PCS), which mimics the CendR motif of neuropilin-1’s endogenous ligands. In addition to facilitating cell entry, binding to neuropilin-1 has analgesic effects. We discuss the potential impact of neuropilin-1 binding by SARS-CoV-2 in ameliorating sickness behavior of the host, and identify a convergent evolutionary strategy of PCS cleavage and subsequent neuropilin binding in other human viruses. In addition, we discuss the evolutionary leap of the ancestor of SARS-COV-2, which involved acquisition of the PCS thus faciliting binding to the neuropilin-1 receptor. Acquisition of the PCS by the ancestor of SARS-CoV-2 appears to have led to pleiotropic beneficial effects including enhancement of cell entry via binding to ACE2, facilitation of cell entry via binding to neuropilin-1, promotion of analgesia, and potentially the formation of decoy epitopes via enhanced shedding of the S1 subunit. Lastly, other potential neuromanipulation strategies employed by SARS-CoV-2 are discussed, including interferon suppression and the resulting reduction in sickness behavior, enhanced transmission through neurally mediated cough induction, and reduction in sense of smell.</p></div>","PeriodicalId":7057,"journal":{"name":"Acta Biotheoretica","volume":"70 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2021-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10441-021-09425-z.pdf","citationCount":"0","resultStr":"{\"title\":\"Host Manipulation Mechanisms of SARS-CoV-2\",\"authors\":\"Steven E. Massey\",\"doi\":\"10.1007/s10441-021-09425-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Viruses are the simplest of pathogens, but possess sophisticated molecular mechanisms to manipulate host behavior, frequently utilizing molecular mimicry. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been shown to bind to the host receptor neuropilin-1 in order to gain entry into the cell. To do this, the virus utilizes its spike protein polybasic cleavage site (PCS), which mimics the CendR motif of neuropilin-1’s endogenous ligands. In addition to facilitating cell entry, binding to neuropilin-1 has analgesic effects. We discuss the potential impact of neuropilin-1 binding by SARS-CoV-2 in ameliorating sickness behavior of the host, and identify a convergent evolutionary strategy of PCS cleavage and subsequent neuropilin binding in other human viruses. In addition, we discuss the evolutionary leap of the ancestor of SARS-COV-2, which involved acquisition of the PCS thus faciliting binding to the neuropilin-1 receptor. Acquisition of the PCS by the ancestor of SARS-CoV-2 appears to have led to pleiotropic beneficial effects including enhancement of cell entry via binding to ACE2, facilitation of cell entry via binding to neuropilin-1, promotion of analgesia, and potentially the formation of decoy epitopes via enhanced shedding of the S1 subunit. Lastly, other potential neuromanipulation strategies employed by SARS-CoV-2 are discussed, including interferon suppression and the resulting reduction in sickness behavior, enhanced transmission through neurally mediated cough induction, and reduction in sense of smell.</p></div>\",\"PeriodicalId\":7057,\"journal\":{\"name\":\"Acta Biotheoretica\",\"volume\":\"70 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2021-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10441-021-09425-z.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Biotheoretica\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10441-021-09425-z\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Biotheoretica","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s10441-021-09425-z","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

病毒是最简单的病原体,但拥有复杂的分子机制来操纵宿主的行为,经常利用分子模仿。严重急性呼吸综合征冠状病毒2 (SARS-CoV-2)已被证明与宿主受体神经肽-1结合,以进入细胞。为了做到这一点,病毒利用它的刺突蛋白多碱性切割位点(PCS),它模仿神经肽-1内源性配体的CendR基序。除了促进细胞进入外,与neuropilin-1结合还具有镇痛作用。我们讨论了SARS-CoV-2结合neuropilin-1在改善宿主疾病行为方面的潜在影响,并确定了其他人类病毒中PCS切割和随后neuropilin结合的趋同进化策略。此外,我们还讨论了SARS-COV-2祖先的进化飞跃,这涉及到PCS的获得,从而促进了与neuropilin-1受体的结合。SARS-CoV-2的祖先获得PCS似乎导致了多种有益作用,包括通过与ACE2结合增强细胞进入,通过与neuropilin-1结合促进细胞进入,促进镇痛,以及通过增强S1亚基的脱落可能形成诱饵表位。最后,讨论了SARS-CoV-2采用的其他潜在神经操纵策略,包括干扰素抑制及其导致的疾病行为减少,通过神经介导的咳嗽诱导增强传播以及嗅觉降低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Host Manipulation Mechanisms of SARS-CoV-2

Viruses are the simplest of pathogens, but possess sophisticated molecular mechanisms to manipulate host behavior, frequently utilizing molecular mimicry. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been shown to bind to the host receptor neuropilin-1 in order to gain entry into the cell. To do this, the virus utilizes its spike protein polybasic cleavage site (PCS), which mimics the CendR motif of neuropilin-1’s endogenous ligands. In addition to facilitating cell entry, binding to neuropilin-1 has analgesic effects. We discuss the potential impact of neuropilin-1 binding by SARS-CoV-2 in ameliorating sickness behavior of the host, and identify a convergent evolutionary strategy of PCS cleavage and subsequent neuropilin binding in other human viruses. In addition, we discuss the evolutionary leap of the ancestor of SARS-COV-2, which involved acquisition of the PCS thus faciliting binding to the neuropilin-1 receptor. Acquisition of the PCS by the ancestor of SARS-CoV-2 appears to have led to pleiotropic beneficial effects including enhancement of cell entry via binding to ACE2, facilitation of cell entry via binding to neuropilin-1, promotion of analgesia, and potentially the formation of decoy epitopes via enhanced shedding of the S1 subunit. Lastly, other potential neuromanipulation strategies employed by SARS-CoV-2 are discussed, including interferon suppression and the resulting reduction in sickness behavior, enhanced transmission through neurally mediated cough induction, and reduction in sense of smell.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Biotheoretica
Acta Biotheoretica 生物-生物学
CiteScore
2.70
自引率
7.70%
发文量
19
审稿时长
3 months
期刊介绍: Acta Biotheoretica is devoted to the promotion of theoretical biology, encompassing mathematical biology and the philosophy of biology, paying special attention to the methodology of formation of biological theory. Papers on all kind of biological theories are welcome. Interesting subjects include philosophy of biology, biomathematics, computational biology, genetics, ecology and morphology. The process of theory formation can be presented in verbal or mathematical form. Moreover, purely methodological papers can be devoted to the historical origins of the philosophy underlying biological theories and concepts. Papers should contain clear statements of biological assumptions, and where applicable, a justification of their translation into mathematical form and a detailed discussion of the mathematical treatment. The connection to empirical data should be clarified. Acta Biotheoretica also welcomes critical book reviews, short comments on previous papers and short notes directing attention to interesting new theoretical ideas.
期刊最新文献
Trypanosomosis and Transhumance: Contributions to Contemporary Conflicts Between Farmers and Herdsmen Along the Tsetse Fly Belts: Mathematical Modeling and Systematic Field Analysis Approach From Fine-Grain to Coarse-Grain Modeling: Estimating Kinetic Parameters of DNA Molecules Von Uexküll’s Umwelt Concept Revived Susceptible-Infectious-Susceptible Epidemic Model with Symmetrical Fluctuations: Equilibrium States and Stability Analyses for Finite Systems Correction: The Effects of Triiodothyronine on the Free Thyroxine Set Point Position in the Hypothalamus Pituitary Thyroid Axis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1