笔石类动物和管状动物的对称性(翼鳃亚目,半纲)

IF 2.6 3区 生物学 Q2 DEVELOPMENTAL BIOLOGY Evolution & Development Pub Date : 2021-12-14 DOI:10.1111/ede.12394
Jörg Maletz
{"title":"笔石类动物和管状动物的对称性(翼鳃亚目,半纲)","authors":"Jörg Maletz","doi":"10.1111/ede.12394","DOIUrl":null,"url":null,"abstract":"<p>Extant and fossil pterobranchs show distinct symmetry conditions of the individual zooids and their tubaria that are not necessarily comparable. The strict bilateral symmetry in the zooids of extant Cephalodiscida is modified to a considerable anatomical asymmetry in extant Rhabdopleurida. This type of left–right asymmetry can be recognized as antisymmetry, as dextral and sinistral developments are equally common. Antisymmetry is also recognized in the rhabdopleurid tubaria and in the proximal development and branching of planktic graptoloids. The antisymmetry of the graptoloid tubarium is modified during the Tremadocian time interval to a fixed or directional asymmetry. From the latest Tremadocian or earliest Floian onwards, proximal development in the Graptoloidea is invariably dextral and very few examples of a sinistral development have been found. The transition from antisymmetry to directional asymmetry can only be recognized in the graptolite tubaria, as the anatomy of the zooids is unknown from the fossil record. Directional asymmetry is not recognized in extant Pterobranchia.</p>","PeriodicalId":12083,"journal":{"name":"Evolution & Development","volume":"23 6","pages":"513-523"},"PeriodicalIF":2.6000,"publicationDate":"2021-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ede.12394","citationCount":"0","resultStr":"{\"title\":\"Symmetry in graptolite zooids and tubaria (Pterobranchia, Hemichordata)\",\"authors\":\"Jörg Maletz\",\"doi\":\"10.1111/ede.12394\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Extant and fossil pterobranchs show distinct symmetry conditions of the individual zooids and their tubaria that are not necessarily comparable. The strict bilateral symmetry in the zooids of extant Cephalodiscida is modified to a considerable anatomical asymmetry in extant Rhabdopleurida. This type of left–right asymmetry can be recognized as antisymmetry, as dextral and sinistral developments are equally common. Antisymmetry is also recognized in the rhabdopleurid tubaria and in the proximal development and branching of planktic graptoloids. The antisymmetry of the graptoloid tubarium is modified during the Tremadocian time interval to a fixed or directional asymmetry. From the latest Tremadocian or earliest Floian onwards, proximal development in the Graptoloidea is invariably dextral and very few examples of a sinistral development have been found. The transition from antisymmetry to directional asymmetry can only be recognized in the graptolite tubaria, as the anatomy of the zooids is unknown from the fossil record. Directional asymmetry is not recognized in extant Pterobranchia.</p>\",\"PeriodicalId\":12083,\"journal\":{\"name\":\"Evolution & Development\",\"volume\":\"23 6\",\"pages\":\"513-523\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2021-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ede.12394\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Evolution & Development\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/ede.12394\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"DEVELOPMENTAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolution & Development","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ede.12394","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

现存的和化石的翼类分支显示出不同的个体动物及其输卵管的对称条件,这并不一定具有可比性。在现存的头齿动物中严格的双边对称被修改为现存的横纹肌动物中相当大的解剖不对称。这种左右不对称可以被认为是反对称,因为右旋和左旋的发展同样常见。在横纹肌胸膜管和浮游笔状体的近端发育和分支中也发现了反对称性。仿笔管的不对称性在特拉玛多西亚时间间隔内被修正为固定的或定向的不对称性。从最新的Tremadocian或最早的Floian开始,笔科的近端发展总是右向的,很少发现左向发展的例子。从不对称到定向不对称的转变只能在笔石管状体中被识别出来,因为从化石记录中不知道这种动物的解剖结构。在现存的翼支目中没有发现方向不对称。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Symmetry in graptolite zooids and tubaria (Pterobranchia, Hemichordata)

Extant and fossil pterobranchs show distinct symmetry conditions of the individual zooids and their tubaria that are not necessarily comparable. The strict bilateral symmetry in the zooids of extant Cephalodiscida is modified to a considerable anatomical asymmetry in extant Rhabdopleurida. This type of left–right asymmetry can be recognized as antisymmetry, as dextral and sinistral developments are equally common. Antisymmetry is also recognized in the rhabdopleurid tubaria and in the proximal development and branching of planktic graptoloids. The antisymmetry of the graptoloid tubarium is modified during the Tremadocian time interval to a fixed or directional asymmetry. From the latest Tremadocian or earliest Floian onwards, proximal development in the Graptoloidea is invariably dextral and very few examples of a sinistral development have been found. The transition from antisymmetry to directional asymmetry can only be recognized in the graptolite tubaria, as the anatomy of the zooids is unknown from the fossil record. Directional asymmetry is not recognized in extant Pterobranchia.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Evolution & Development
Evolution & Development 生物-发育生物学
CiteScore
6.30
自引率
3.40%
发文量
26
审稿时长
>12 weeks
期刊介绍: Evolution & Development serves as a voice for the rapidly growing research community at the interface of evolutionary and developmental biology. The exciting re-integration of these two fields, after almost a century''s separation, holds much promise as the focus of a broader synthesis of biological thought. Evolution & Development publishes works that address the evolution/development interface from a diversity of angles. The journal welcomes papers from paleontologists, population biologists, developmental biologists, and molecular biologists, but also encourages submissions from professionals in other fields where relevant research is being carried out, from mathematics to the history and philosophy of science.
期刊最新文献
Issue information Front cover From two segments and beyond: Investigating the onset of regeneration in Syllis malaquini Issue information A new motile animal with implications for the evolution of axial polarity from the Ediacaran of South Australia
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1