Garrett D. Sheehan , Molly K. Martin , Violet A. Young , Rasheen Powell , Arin Bhattacharjee
{"title":"在坐骨神经卡压损伤模型中,热痛觉过敏和动态负重具有相似的恢复动力学","authors":"Garrett D. Sheehan , Molly K. Martin , Violet A. Young , Rasheen Powell , Arin Bhattacharjee","doi":"10.1016/j.ynpai.2021.100079","DOIUrl":null,"url":null,"abstract":"<div><p>Chronic constriction injuries (CCI) of the sciatic nerve are widely used nerve entrapment animal models of neuropathic pain. Two common pain behaviors observed following CCI are thermal hyperalgesia and mechanical allodynia, measured by the Hargreaves and von Frey tests, respectively. While thermal hyperalgesia tends to recover by 30 days, mechanical allodynia can persist for many more months thereafter. Consequently, mechanical allodynia has been used extensively as a measure of ‘chronic pain’ focusing on the circuitry changes that occur within the spinal cord. Here, using the sciatic nerve cuff variant of CCI in mice, we propose that in contrast to these evoked measures of nociceptive hypersensitivity, dynamic weight bearing provides a more clinically relevant behavioral measure for ongoing pain during nerve injury. We found that the effect of sciatic nerve cuff on the ratio of weight bearing by the injured relative to uninjured hindlimbs more closely resembled that of thermal hyperalgesia, following a trend toward recovery by 30 days. We also found an increase in the percent of body weight bearing by the contralateral paw that is not seen in the previously tested behaviors. These results demonstrate that dynamic weight bearing is a reliable measure of non-evoked neuropathic pain and suggest that thermal hyperalgesia, rather than mechanical allodynia, provides a proxy measure for nerve entrapment-induced ongoing pain.</p></div>","PeriodicalId":52177,"journal":{"name":"Neurobiology of Pain","volume":"10 ","pages":"Article 100079"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8665403/pdf/","citationCount":"4","resultStr":"{\"title\":\"Thermal hyperalgesia and dynamic weight bearing share similar recovery dynamics in a sciatic nerve entrapment injury model\",\"authors\":\"Garrett D. Sheehan , Molly K. Martin , Violet A. Young , Rasheen Powell , Arin Bhattacharjee\",\"doi\":\"10.1016/j.ynpai.2021.100079\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Chronic constriction injuries (CCI) of the sciatic nerve are widely used nerve entrapment animal models of neuropathic pain. Two common pain behaviors observed following CCI are thermal hyperalgesia and mechanical allodynia, measured by the Hargreaves and von Frey tests, respectively. While thermal hyperalgesia tends to recover by 30 days, mechanical allodynia can persist for many more months thereafter. Consequently, mechanical allodynia has been used extensively as a measure of ‘chronic pain’ focusing on the circuitry changes that occur within the spinal cord. Here, using the sciatic nerve cuff variant of CCI in mice, we propose that in contrast to these evoked measures of nociceptive hypersensitivity, dynamic weight bearing provides a more clinically relevant behavioral measure for ongoing pain during nerve injury. We found that the effect of sciatic nerve cuff on the ratio of weight bearing by the injured relative to uninjured hindlimbs more closely resembled that of thermal hyperalgesia, following a trend toward recovery by 30 days. We also found an increase in the percent of body weight bearing by the contralateral paw that is not seen in the previously tested behaviors. These results demonstrate that dynamic weight bearing is a reliable measure of non-evoked neuropathic pain and suggest that thermal hyperalgesia, rather than mechanical allodynia, provides a proxy measure for nerve entrapment-induced ongoing pain.</p></div>\",\"PeriodicalId\":52177,\"journal\":{\"name\":\"Neurobiology of Pain\",\"volume\":\"10 \",\"pages\":\"Article 100079\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8665403/pdf/\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurobiology of Pain\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2452073X21000209\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurobiology of Pain","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452073X21000209","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
Thermal hyperalgesia and dynamic weight bearing share similar recovery dynamics in a sciatic nerve entrapment injury model
Chronic constriction injuries (CCI) of the sciatic nerve are widely used nerve entrapment animal models of neuropathic pain. Two common pain behaviors observed following CCI are thermal hyperalgesia and mechanical allodynia, measured by the Hargreaves and von Frey tests, respectively. While thermal hyperalgesia tends to recover by 30 days, mechanical allodynia can persist for many more months thereafter. Consequently, mechanical allodynia has been used extensively as a measure of ‘chronic pain’ focusing on the circuitry changes that occur within the spinal cord. Here, using the sciatic nerve cuff variant of CCI in mice, we propose that in contrast to these evoked measures of nociceptive hypersensitivity, dynamic weight bearing provides a more clinically relevant behavioral measure for ongoing pain during nerve injury. We found that the effect of sciatic nerve cuff on the ratio of weight bearing by the injured relative to uninjured hindlimbs more closely resembled that of thermal hyperalgesia, following a trend toward recovery by 30 days. We also found an increase in the percent of body weight bearing by the contralateral paw that is not seen in the previously tested behaviors. These results demonstrate that dynamic weight bearing is a reliable measure of non-evoked neuropathic pain and suggest that thermal hyperalgesia, rather than mechanical allodynia, provides a proxy measure for nerve entrapment-induced ongoing pain.