数据独立获取蛋白质组学的深度学习方法。

IF 3.8 3区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Expert Review of Proteomics Pub Date : 2021-12-01 Epub Date: 2021-12-28 DOI:10.1080/14789450.2021.2020654
Yi Yang, Ling Lin, Liang Qiao
{"title":"数据独立获取蛋白质组学的深度学习方法。","authors":"Yi Yang,&nbsp;Ling Lin,&nbsp;Liang Qiao","doi":"10.1080/14789450.2021.2020654","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Data-independent acquisition (DIA) is an emerging technology for large-scale proteomic studies. DIA data analysis methods are evolving rapidly, and deep learning has cut a conspicuous figure in this field.</p><p><strong>Areas covered: </strong>This review discusses and provides an overview of the deep learning methods that are used for DIA data analysis, including spectral library prediction, feature scoring, and statistical control in peptide-centric analysis, as well as de novo peptide sequencing. Literature searches were performed for articles, including preprints, up to December 2021 from PubMed, Scopus, and Web of Science databases.</p><p><strong>Expert opinion: </strong>While spectral library prediction has broken through the limitation on proteome coverage of experimental libraries, the statistical burden due to the large query space is the remaining challenge of utilizing proteome-wide predicted libraries. Analysis of post-translational modifications is another promising direction of deep learning-based DIA methods.</p>","PeriodicalId":50463,"journal":{"name":"Expert Review of Proteomics","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Deep learning approaches for data-independent acquisition proteomics.\",\"authors\":\"Yi Yang,&nbsp;Ling Lin,&nbsp;Liang Qiao\",\"doi\":\"10.1080/14789450.2021.2020654\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Data-independent acquisition (DIA) is an emerging technology for large-scale proteomic studies. DIA data analysis methods are evolving rapidly, and deep learning has cut a conspicuous figure in this field.</p><p><strong>Areas covered: </strong>This review discusses and provides an overview of the deep learning methods that are used for DIA data analysis, including spectral library prediction, feature scoring, and statistical control in peptide-centric analysis, as well as de novo peptide sequencing. Literature searches were performed for articles, including preprints, up to December 2021 from PubMed, Scopus, and Web of Science databases.</p><p><strong>Expert opinion: </strong>While spectral library prediction has broken through the limitation on proteome coverage of experimental libraries, the statistical burden due to the large query space is the remaining challenge of utilizing proteome-wide predicted libraries. Analysis of post-translational modifications is another promising direction of deep learning-based DIA methods.</p>\",\"PeriodicalId\":50463,\"journal\":{\"name\":\"Expert Review of Proteomics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Expert Review of Proteomics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/14789450.2021.2020654\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/12/28 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Review of Proteomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/14789450.2021.2020654","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/12/28 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 8

摘要

数据独立采集(DIA)是一项用于大规模蛋白质组学研究的新兴技术。DIA数据分析方法正在迅速发展,深度学习在这一领域已经崭露头角。涵盖领域:本文讨论并概述了用于DIA数据分析的深度学习方法,包括光谱库预测、特征评分、肽中心分析中的统计控制以及从头开始的肽测序。对截至2021年12月的PubMed、Scopus和Web of Science数据库中的文章(包括预印本)进行文献检索。专家意见:光谱文库预测虽然突破了实验文库对蛋白质组覆盖的限制,但由于查询空间大所带来的统计负担是利用全蛋白质组预测文库的剩余挑战。翻译后修饰分析是基于深度学习的DIA方法的另一个有前途的方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Deep learning approaches for data-independent acquisition proteomics.

Introduction: Data-independent acquisition (DIA) is an emerging technology for large-scale proteomic studies. DIA data analysis methods are evolving rapidly, and deep learning has cut a conspicuous figure in this field.

Areas covered: This review discusses and provides an overview of the deep learning methods that are used for DIA data analysis, including spectral library prediction, feature scoring, and statistical control in peptide-centric analysis, as well as de novo peptide sequencing. Literature searches were performed for articles, including preprints, up to December 2021 from PubMed, Scopus, and Web of Science databases.

Expert opinion: While spectral library prediction has broken through the limitation on proteome coverage of experimental libraries, the statistical burden due to the large query space is the remaining challenge of utilizing proteome-wide predicted libraries. Analysis of post-translational modifications is another promising direction of deep learning-based DIA methods.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Expert Review of Proteomics
Expert Review of Proteomics 生物-生化研究方法
CiteScore
7.60
自引率
0.00%
发文量
20
审稿时长
6-12 weeks
期刊介绍: Expert Review of Proteomics (ISSN 1478-9450) seeks to collect together technologies, methods and discoveries from the field of proteomics to advance scientific understanding of the many varied roles protein expression plays in human health and disease. The journal coverage includes, but is not limited to, overviews of specific technological advances in the development of protein arrays, interaction maps, data archives and biological assays, performance of new technologies and prospects for future drug discovery. The journal adopts the unique Expert Review article format, offering a complete overview of current thinking in a key technology area, research or clinical practice, augmented by the following sections: Expert Opinion - a personal view on the most effective or promising strategies and a clear perspective of future prospects within a realistic timescale Article highlights - an executive summary cutting to the author''s most critical points.
期刊最新文献
Proteomic investigations of dengue virus infection: key discoveries over the last 10 years. Advancing kidney transplant outcomes: the role of urinary proteomics in graft function monitoring and rejection detection. Data-independent acquisition in metaproteomics. Salivary metabolomics in early detection of oral squamous cell carcinoma - a meta-analysis. The potential of proteomics for in-depth bioanalytical investigations of satellite cell function in applied myology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1