{"title":"血管平滑肌细胞机械敏感调节因子与血管重构。","authors":"Shangmin Liu, Zhanyi Lin","doi":"10.1159/000519845","DOIUrl":null,"url":null,"abstract":"<p><p>Blood vessels are subjected to mechanical loads of pressure and flow, inducing smooth muscle circumferential and endothelial shear stresses. The perception and response of vascular tissue and living cells to these stresses and the microenvironment they are exposed to are critical to their function and survival. These mechanical stimuli not only cause morphological changes in cells and vessel walls but also can interfere with biochemical homeostasis, leading to vascular remodeling and dysfunction. However, the mechanisms underlying how these stimuli affect tissue and cellular function, including mechanical stimulation-induced biochemical signaling and mechanical transduction that relies on cytoskeletal integrity, are unclear. This review focuses on signaling pathways that regulate multiple biochemical processes in vascular mesangial smooth muscle cells in response to circumferential stress and are involved in mechanosensitive regulatory molecules in response to mechanotransduction, including ion channels, membrane receptors, integrins, cytoskeletal proteins, nuclear structures, and cascades. Mechanoactivation of these signaling pathways is closely associated with vascular remodeling in physiological or pathophysiological states.</p>","PeriodicalId":17530,"journal":{"name":"Journal of Vascular Research","volume":"59 2","pages":"90-113"},"PeriodicalIF":1.8000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"Vascular Smooth Muscle Cells Mechanosensitive Regulators and Vascular Remodeling.\",\"authors\":\"Shangmin Liu, Zhanyi Lin\",\"doi\":\"10.1159/000519845\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Blood vessels are subjected to mechanical loads of pressure and flow, inducing smooth muscle circumferential and endothelial shear stresses. The perception and response of vascular tissue and living cells to these stresses and the microenvironment they are exposed to are critical to their function and survival. These mechanical stimuli not only cause morphological changes in cells and vessel walls but also can interfere with biochemical homeostasis, leading to vascular remodeling and dysfunction. However, the mechanisms underlying how these stimuli affect tissue and cellular function, including mechanical stimulation-induced biochemical signaling and mechanical transduction that relies on cytoskeletal integrity, are unclear. This review focuses on signaling pathways that regulate multiple biochemical processes in vascular mesangial smooth muscle cells in response to circumferential stress and are involved in mechanosensitive regulatory molecules in response to mechanotransduction, including ion channels, membrane receptors, integrins, cytoskeletal proteins, nuclear structures, and cascades. Mechanoactivation of these signaling pathways is closely associated with vascular remodeling in physiological or pathophysiological states.</p>\",\"PeriodicalId\":17530,\"journal\":{\"name\":\"Journal of Vascular Research\",\"volume\":\"59 2\",\"pages\":\"90-113\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Vascular Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1159/000519845\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/12/22 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"PERIPHERAL VASCULAR DISEASE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Vascular Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1159/000519845","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/12/22 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"PERIPHERAL VASCULAR DISEASE","Score":null,"Total":0}
Vascular Smooth Muscle Cells Mechanosensitive Regulators and Vascular Remodeling.
Blood vessels are subjected to mechanical loads of pressure and flow, inducing smooth muscle circumferential and endothelial shear stresses. The perception and response of vascular tissue and living cells to these stresses and the microenvironment they are exposed to are critical to their function and survival. These mechanical stimuli not only cause morphological changes in cells and vessel walls but also can interfere with biochemical homeostasis, leading to vascular remodeling and dysfunction. However, the mechanisms underlying how these stimuli affect tissue and cellular function, including mechanical stimulation-induced biochemical signaling and mechanical transduction that relies on cytoskeletal integrity, are unclear. This review focuses on signaling pathways that regulate multiple biochemical processes in vascular mesangial smooth muscle cells in response to circumferential stress and are involved in mechanosensitive regulatory molecules in response to mechanotransduction, including ion channels, membrane receptors, integrins, cytoskeletal proteins, nuclear structures, and cascades. Mechanoactivation of these signaling pathways is closely associated with vascular remodeling in physiological or pathophysiological states.
期刊介绍:
The ''Journal of Vascular Research'' publishes original articles and reviews of scientific excellence in vascular and microvascular biology, physiology and pathophysiology. The scope of the journal covers a broad spectrum of vascular and lymphatic research, including vascular structure, vascular function, haemodynamics, mechanics, cell signalling, intercellular communication, growth and differentiation. JVR''s ''Vascular Update'' series regularly presents state-of-the-art reviews on hot topics in vascular biology. Manuscript processing times are, consistent with stringent review, kept as short as possible due to electronic submission. All articles are published online first, ensuring rapid publication. The ''Journal of Vascular Research'' is the official journal of the European Society for Microcirculation. A biennial prize is awarded to the authors of the best paper published in the journal over the previous two years, thus encouraging young scientists working in the exciting field of vascular biology to publish their findings.