Mohd Shoaib, Utkarsh Prabhakar, Sumit Mahlawat, Varun Ramamohan
{"title":"印度拉贾斯坦邦肾移植系统的离散事件模拟模型。","authors":"Mohd Shoaib, Utkarsh Prabhakar, Sumit Mahlawat, Varun Ramamohan","doi":"10.1080/20476965.2020.1848355","DOIUrl":null,"url":null,"abstract":"<p><p>We present a discrete-event simulation model of the kidney transplantation system in an Indian state, Rajasthan. Organs are generated across the state based on the organ donation rate among the general population, and are allocated to patients on the kidney transplantation waitlist. The organ allocation algorithm is developed using official guidelines published for kidney transplantation, and model parameters were estimated using publicly available data to the extent possible. Transplantation outcomes generated by the model include: (a) the probabilities of a patient receiving an organ within one to 5 years of registration and (b) the average number of deaths per year due to lack of donated organs. Simulation experiments involving observing the effect of increasing the organ arrival rate and establishing additional transplantation centres on transplantation outcomes are also conducted. We also demonstrate the use of such a model to optimally locate additional transplantation centres using simulation optimisation methods.</p>","PeriodicalId":44699,"journal":{"name":"Health Systems","volume":"11 1","pages":"30-47"},"PeriodicalIF":1.2000,"publicationDate":"2020-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/20476965.2020.1848355","citationCount":"0","resultStr":"{\"title\":\"A discrete-event simulation model of the kidney transplantation system in Rajasthan, India.\",\"authors\":\"Mohd Shoaib, Utkarsh Prabhakar, Sumit Mahlawat, Varun Ramamohan\",\"doi\":\"10.1080/20476965.2020.1848355\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We present a discrete-event simulation model of the kidney transplantation system in an Indian state, Rajasthan. Organs are generated across the state based on the organ donation rate among the general population, and are allocated to patients on the kidney transplantation waitlist. The organ allocation algorithm is developed using official guidelines published for kidney transplantation, and model parameters were estimated using publicly available data to the extent possible. Transplantation outcomes generated by the model include: (a) the probabilities of a patient receiving an organ within one to 5 years of registration and (b) the average number of deaths per year due to lack of donated organs. Simulation experiments involving observing the effect of increasing the organ arrival rate and establishing additional transplantation centres on transplantation outcomes are also conducted. We also demonstrate the use of such a model to optimally locate additional transplantation centres using simulation optimisation methods.</p>\",\"PeriodicalId\":44699,\"journal\":{\"name\":\"Health Systems\",\"volume\":\"11 1\",\"pages\":\"30-47\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2020-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/20476965.2020.1848355\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Health Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/20476965.2020.1848355\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q4\",\"JCRName\":\"HEALTH POLICY & SERVICES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Health Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/20476965.2020.1848355","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/1/1 0:00:00","PubModel":"eCollection","JCR":"Q4","JCRName":"HEALTH POLICY & SERVICES","Score":null,"Total":0}
A discrete-event simulation model of the kidney transplantation system in Rajasthan, India.
We present a discrete-event simulation model of the kidney transplantation system in an Indian state, Rajasthan. Organs are generated across the state based on the organ donation rate among the general population, and are allocated to patients on the kidney transplantation waitlist. The organ allocation algorithm is developed using official guidelines published for kidney transplantation, and model parameters were estimated using publicly available data to the extent possible. Transplantation outcomes generated by the model include: (a) the probabilities of a patient receiving an organ within one to 5 years of registration and (b) the average number of deaths per year due to lack of donated organs. Simulation experiments involving observing the effect of increasing the organ arrival rate and establishing additional transplantation centres on transplantation outcomes are also conducted. We also demonstrate the use of such a model to optimally locate additional transplantation centres using simulation optimisation methods.