Chao Wang , Duoling Xu , Ling Lin , Shujun Li , Wentao Hou , Yi He , Liyuan Sheng , Chen Yi , Xiliu Zhang , Hongyu Li , Yiming Li , Wei Zhao , Dongsheng Yu
{"title":"不同孔隙结构大孔径Ti6Al4V支架血管化骨再生研究","authors":"Chao Wang , Duoling Xu , Ling Lin , Shujun Li , Wentao Hou , Yi He , Liyuan Sheng , Chen Yi , Xiliu Zhang , Hongyu Li , Yiming Li , Wei Zhao , Dongsheng Yu","doi":"10.1016/j.msec.2021.112499","DOIUrl":null,"url":null,"abstract":"<div><p>Porous Ti6Al4V scaffolds are characterized by high porosity, low elastic modulus, and good osteogenesis and vascularization, which are expected to facilitate the repair of large-scale bone defects in future clinical applications. Ti6Al4V scaffolds are divided into regular and irregular structures according to the pore structure, but the pore structure more capable of promoting bone regeneration and angiogenesis has not yet been reported. The purpose of this study was to explore the optimal pore structure and pore size of the Ti6Al4V porous scaffold for the repair of large-area bone defects and the promotion of vascularization in the early stage of osteogenesis. 7 groups of porous Ti6Al4V scaffolds, named NP, R8, R9, R10, P8, P9 and P10, were fabricated by Electron-beam-melting (EBM). Live/dead staining, immunofluorescence staining, SEM, CCK8, ALP, and PCR were used to detect the adhesion, proliferation, and differentiation of BMSCs on different groups of scaffolds. Hematoxylin-eosin (HE) staining and Van Gieson (VG) staining were used to detect bone regeneration and angiogenesis <em>in vivo</em>. The research results showed that as the pore size of the scaffold increased, the surface area and volume of the scaffold gradually decreased, and cell proliferation ability and cell viability gradually increased. The ability of cells to vascularize on scaffolds with irregular pore sizes was stronger than that on scaffolds with regular pore sizes. Micro-CT 3D reconstruction images showed that bone regeneration was obvious and new blood vessels were thick on the P10 scaffold. HE and VG staining showed that the proportion of bone area on the scaffolds with irregular pores was higher than that on scaffolds with regular pores. P10 had better mechanical properties and were more conducive to bone tissue ingrowth and blood vessel formation, thereby facilitating the repair of large-area bone defects.</p></div>","PeriodicalId":18212,"journal":{"name":"Materials science & engineering. C, Materials for biological applications","volume":"131 ","pages":"Article 112499"},"PeriodicalIF":8.1000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0928493121006391/pdfft?md5=ba4bade8e3fa22fee145cddeb26af0de&pid=1-s2.0-S0928493121006391-mainext.pdf","citationCount":"34","resultStr":"{\"title\":\"Large-pore-size Ti6Al4V scaffolds with different pore structures for vascularized bone regeneration\",\"authors\":\"Chao Wang , Duoling Xu , Ling Lin , Shujun Li , Wentao Hou , Yi He , Liyuan Sheng , Chen Yi , Xiliu Zhang , Hongyu Li , Yiming Li , Wei Zhao , Dongsheng Yu\",\"doi\":\"10.1016/j.msec.2021.112499\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Porous Ti6Al4V scaffolds are characterized by high porosity, low elastic modulus, and good osteogenesis and vascularization, which are expected to facilitate the repair of large-scale bone defects in future clinical applications. Ti6Al4V scaffolds are divided into regular and irregular structures according to the pore structure, but the pore structure more capable of promoting bone regeneration and angiogenesis has not yet been reported. The purpose of this study was to explore the optimal pore structure and pore size of the Ti6Al4V porous scaffold for the repair of large-area bone defects and the promotion of vascularization in the early stage of osteogenesis. 7 groups of porous Ti6Al4V scaffolds, named NP, R8, R9, R10, P8, P9 and P10, were fabricated by Electron-beam-melting (EBM). Live/dead staining, immunofluorescence staining, SEM, CCK8, ALP, and PCR were used to detect the adhesion, proliferation, and differentiation of BMSCs on different groups of scaffolds. Hematoxylin-eosin (HE) staining and Van Gieson (VG) staining were used to detect bone regeneration and angiogenesis <em>in vivo</em>. The research results showed that as the pore size of the scaffold increased, the surface area and volume of the scaffold gradually decreased, and cell proliferation ability and cell viability gradually increased. The ability of cells to vascularize on scaffolds with irregular pore sizes was stronger than that on scaffolds with regular pore sizes. Micro-CT 3D reconstruction images showed that bone regeneration was obvious and new blood vessels were thick on the P10 scaffold. HE and VG staining showed that the proportion of bone area on the scaffolds with irregular pores was higher than that on scaffolds with regular pores. P10 had better mechanical properties and were more conducive to bone tissue ingrowth and blood vessel formation, thereby facilitating the repair of large-area bone defects.</p></div>\",\"PeriodicalId\":18212,\"journal\":{\"name\":\"Materials science & engineering. C, Materials for biological applications\",\"volume\":\"131 \",\"pages\":\"Article 112499\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0928493121006391/pdfft?md5=ba4bade8e3fa22fee145cddeb26af0de&pid=1-s2.0-S0928493121006391-mainext.pdf\",\"citationCount\":\"34\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials science & engineering. C, Materials for biological applications\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0928493121006391\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials science & engineering. C, Materials for biological applications","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0928493121006391","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Large-pore-size Ti6Al4V scaffolds with different pore structures for vascularized bone regeneration
Porous Ti6Al4V scaffolds are characterized by high porosity, low elastic modulus, and good osteogenesis and vascularization, which are expected to facilitate the repair of large-scale bone defects in future clinical applications. Ti6Al4V scaffolds are divided into regular and irregular structures according to the pore structure, but the pore structure more capable of promoting bone regeneration and angiogenesis has not yet been reported. The purpose of this study was to explore the optimal pore structure and pore size of the Ti6Al4V porous scaffold for the repair of large-area bone defects and the promotion of vascularization in the early stage of osteogenesis. 7 groups of porous Ti6Al4V scaffolds, named NP, R8, R9, R10, P8, P9 and P10, were fabricated by Electron-beam-melting (EBM). Live/dead staining, immunofluorescence staining, SEM, CCK8, ALP, and PCR were used to detect the adhesion, proliferation, and differentiation of BMSCs on different groups of scaffolds. Hematoxylin-eosin (HE) staining and Van Gieson (VG) staining were used to detect bone regeneration and angiogenesis in vivo. The research results showed that as the pore size of the scaffold increased, the surface area and volume of the scaffold gradually decreased, and cell proliferation ability and cell viability gradually increased. The ability of cells to vascularize on scaffolds with irregular pore sizes was stronger than that on scaffolds with regular pore sizes. Micro-CT 3D reconstruction images showed that bone regeneration was obvious and new blood vessels were thick on the P10 scaffold. HE and VG staining showed that the proportion of bone area on the scaffolds with irregular pores was higher than that on scaffolds with regular pores. P10 had better mechanical properties and were more conducive to bone tissue ingrowth and blood vessel formation, thereby facilitating the repair of large-area bone defects.
期刊介绍:
Materials Today is a community committed to fostering the creation and sharing of knowledge and experience in materials science. With the support of Elsevier, this community publishes high-impact peer-reviewed journals, organizes academic conferences, and conducts educational webinars, among other initiatives. It serves as a hub for advancing materials science and facilitating collaboration within the scientific community.