二氧化钛@ ZrO2集成聚己内酯纤维组织结构的双金属负载生物陶瓷具有抗菌作用,并能诱导MC3T3-E1细胞成骨

IF 8.1 1区 工程技术 Q1 MATERIALS SCIENCE, BIOMATERIALS Materials science & engineering. C, Materials for biological applications Pub Date : 2021-12-01 DOI:10.1016/j.msec.2021.112501
Rupesh Kandel , Se Rim Jang , Sita Shrestha , Upasana Ghimire , Bishnu Kumar Shrestha , Chan Hee Park , Cheol Sang Kim
{"title":"二氧化钛@ ZrO2集成聚己内酯纤维组织结构的双金属负载生物陶瓷具有抗菌作用,并能诱导MC3T3-E1细胞成骨","authors":"Rupesh Kandel ,&nbsp;Se Rim Jang ,&nbsp;Sita Shrestha ,&nbsp;Upasana Ghimire ,&nbsp;Bishnu Kumar Shrestha ,&nbsp;Chan Hee Park ,&nbsp;Cheol Sang Kim","doi":"10.1016/j.msec.2021.112501","DOIUrl":null,"url":null,"abstract":"<div><p>Bioactive mesoporous binary metal oxide nanoparticles allied with polymeric scaffolds can mimic natural extracellular matrix because of their self-mineralized functional matrix. Herein, we developed fibrous scaffolds of polycaprolactone (PCL) integrating well-dispersed TiO<sub>2</sub>@ZrO<sub>2</sub> nanoparticles (NPs) via electrospinning for a tissue engineering approach. The scaffold with 0.1 wt% of bioceramic (TiO<sub>2</sub>@ZrO<sub>2</sub>) shows synergistic effects on physicochemical and bioactivity suited to stem cell attachment/proliferation. The bioceramics-based scaffold shows excellent antibacterial activity that can prevent implant-associated infections. In addition, the TiO<sub>2</sub>@ZrO<sub>2</sub> in scaffold serves as a stem cell microenvironment to accelerate cell-to-cell interactions, including cell growth, morphology/orientation, differentiation, and regeneration. The NPs in PCL exert superior biocompatibility on MC3T3-E1 cells inducing osteogenic differentiation. The ALP activity and ARS staining confirm the upregulation of bone-related proteins and minerals suggesting the scaffolds exhibit osteoinductive abilities and contribute to bone cell regeneration. Based on this result, the bimetallic oxide could become a novel bone ceramic tailor TiO<sub>2</sub>@ZrO<sub>2</sub> composite tissue-construct and keep potential nanomaterials-based scaffold for bone tissue engineering strategy.</p></div>","PeriodicalId":18212,"journal":{"name":"Materials science & engineering. C, Materials for biological applications","volume":"131 ","pages":"Article 112501"},"PeriodicalIF":8.1000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S092849312100641X/pdfft?md5=73317f4f1ee7e9921da3c2e4c4190b69&pid=1-s2.0-S092849312100641X-main.pdf","citationCount":"12","resultStr":"{\"title\":\"A bimetallic load-bearing bioceramics of TiO2 @ ZrO2 integrated polycaprolactone fibrous tissue construct exhibits anti bactericidal effect and induces osteogenesis in MC3T3-E1 cells\",\"authors\":\"Rupesh Kandel ,&nbsp;Se Rim Jang ,&nbsp;Sita Shrestha ,&nbsp;Upasana Ghimire ,&nbsp;Bishnu Kumar Shrestha ,&nbsp;Chan Hee Park ,&nbsp;Cheol Sang Kim\",\"doi\":\"10.1016/j.msec.2021.112501\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Bioactive mesoporous binary metal oxide nanoparticles allied with polymeric scaffolds can mimic natural extracellular matrix because of their self-mineralized functional matrix. Herein, we developed fibrous scaffolds of polycaprolactone (PCL) integrating well-dispersed TiO<sub>2</sub>@ZrO<sub>2</sub> nanoparticles (NPs) via electrospinning for a tissue engineering approach. The scaffold with 0.1 wt% of bioceramic (TiO<sub>2</sub>@ZrO<sub>2</sub>) shows synergistic effects on physicochemical and bioactivity suited to stem cell attachment/proliferation. The bioceramics-based scaffold shows excellent antibacterial activity that can prevent implant-associated infections. In addition, the TiO<sub>2</sub>@ZrO<sub>2</sub> in scaffold serves as a stem cell microenvironment to accelerate cell-to-cell interactions, including cell growth, morphology/orientation, differentiation, and regeneration. The NPs in PCL exert superior biocompatibility on MC3T3-E1 cells inducing osteogenic differentiation. The ALP activity and ARS staining confirm the upregulation of bone-related proteins and minerals suggesting the scaffolds exhibit osteoinductive abilities and contribute to bone cell regeneration. Based on this result, the bimetallic oxide could become a novel bone ceramic tailor TiO<sub>2</sub>@ZrO<sub>2</sub> composite tissue-construct and keep potential nanomaterials-based scaffold for bone tissue engineering strategy.</p></div>\",\"PeriodicalId\":18212,\"journal\":{\"name\":\"Materials science & engineering. C, Materials for biological applications\",\"volume\":\"131 \",\"pages\":\"Article 112501\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S092849312100641X/pdfft?md5=73317f4f1ee7e9921da3c2e4c4190b69&pid=1-s2.0-S092849312100641X-main.pdf\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials science & engineering. C, Materials for biological applications\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S092849312100641X\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials science & engineering. C, Materials for biological applications","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S092849312100641X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 12

摘要

具有生物活性的介孔二元金属氧化物纳米颗粒与聚合物支架结合,可以模拟天然细胞外基质,因为它们具有自矿化功能基质。在此,我们开发了聚己内酯(PCL)纤维支架,通过静电纺丝将分散良好的TiO2@ZrO2纳米颗粒(NPs)整合在一起,用于组织工程方法。含有0.1 wt%生物陶瓷的支架(TiO2@ZrO2)显示出适合干细胞附着/增殖的物理化学和生物活性的协同效应。基于生物陶瓷的支架具有良好的抗菌活性,可以预防种植体相关感染。此外,TiO2@ZrO2支架作为干细胞微环境,加速细胞间的相互作用,包括细胞生长、形态/取向、分化和再生。PCL中的NPs对MC3T3-E1细胞具有良好的生物相容性,可诱导成骨分化。ALP活性和ARS染色证实骨相关蛋白和矿物质的上调,表明支架具有骨诱导能力,有助于骨细胞再生。基于这一结果,双金属氧化物可以成为一种新型的骨陶瓷定制TiO2@ZrO2复合组织结构,并为骨组织工程策略保留潜在的纳米材料基支架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A bimetallic load-bearing bioceramics of TiO2 @ ZrO2 integrated polycaprolactone fibrous tissue construct exhibits anti bactericidal effect and induces osteogenesis in MC3T3-E1 cells

Bioactive mesoporous binary metal oxide nanoparticles allied with polymeric scaffolds can mimic natural extracellular matrix because of their self-mineralized functional matrix. Herein, we developed fibrous scaffolds of polycaprolactone (PCL) integrating well-dispersed TiO2@ZrO2 nanoparticles (NPs) via electrospinning for a tissue engineering approach. The scaffold with 0.1 wt% of bioceramic (TiO2@ZrO2) shows synergistic effects on physicochemical and bioactivity suited to stem cell attachment/proliferation. The bioceramics-based scaffold shows excellent antibacterial activity that can prevent implant-associated infections. In addition, the TiO2@ZrO2 in scaffold serves as a stem cell microenvironment to accelerate cell-to-cell interactions, including cell growth, morphology/orientation, differentiation, and regeneration. The NPs in PCL exert superior biocompatibility on MC3T3-E1 cells inducing osteogenic differentiation. The ALP activity and ARS staining confirm the upregulation of bone-related proteins and minerals suggesting the scaffolds exhibit osteoinductive abilities and contribute to bone cell regeneration. Based on this result, the bimetallic oxide could become a novel bone ceramic tailor TiO2@ZrO2 composite tissue-construct and keep potential nanomaterials-based scaffold for bone tissue engineering strategy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
12.60
自引率
0.00%
发文量
28
审稿时长
3.3 months
期刊介绍: Materials Today is a community committed to fostering the creation and sharing of knowledge and experience in materials science. With the support of Elsevier, this community publishes high-impact peer-reviewed journals, organizes academic conferences, and conducts educational webinars, among other initiatives. It serves as a hub for advancing materials science and facilitating collaboration within the scientific community.
期刊最新文献
Editorial Board Autologous stromal vascular fraction-loaded hyaluronic acid/gelatin-biphasic calcium phosphate scaffold for bone tissue regeneration Construction of multifunctional micro-patterned PALNMA/PDADMAC/PEGDA hydrogel and intelligently responsive antibacterial coating HA/BBR on Mg alloy surface for orthopedic application Machine learning to empower electrohydrodynamic processing Nanoparticles-stacked superhydrophilic coating supported synergistic antimicrobial ability for enhanced wound healing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1