Jingyuan Xiong, Ye Tian, Aru Ling, Zhenmi Liu, Li Zhao, Guo Cheng
{"title":"染料木素通过调节kisspeptin受体和关键调节因子影响GT1-7细胞促性腺激素释放激素的分泌。","authors":"Jingyuan Xiong, Ye Tian, Aru Ling, Zhenmi Liu, Li Zhao, Guo Cheng","doi":"10.1080/19396368.2021.2003910","DOIUrl":null,"url":null,"abstract":"<p><p>Epidemiological studies have shown that genistein, an isoflavonoid phytoestrogen from soybean, affects endocrine and reproductive systems and alters pubertal onset. Administration of genistein in mice could impact the electrophysiology of hypothalamic neurons associated with the secretion of gonadotropin-releasing hormone (GnRH), a key component of hypothalamic-pituitary-gonadal (HPG) axis that governs hormone release and reproductive maturation. However, whether genistein could directly influence GnRH secretion in GnRH-specific neurons requires further investigation. Here, mouse hypothalamic GT1-7 neurons were recruited as a GnRH-expressing model to directly evaluate the effect and mechanisms of genistein on GnRH release. Results from this study demonstrated that genistein treatment decreased cell viability, impacted cell cycle distribution, and induced apoptosis of GT1-7 cells. A high concentration of genistein (20 μM) significantly increased GnRH secretion by 122.4% compared to the control. Since GnRH release is regulated by components of the kisspeptin-neurokinin-dynorphin (KNDy) system and regulators including SIRT1, PKC<sub>γ,</sub> and MKRN3, their transcription and translation were examined. Significant increases were observed for the mRNA and protein levels of the KNDy component kisspeptin receptor (<i>Gpr54</i>/Kissr). Compared to the control, genistein treatment upregulated the level of <i>Sirt1</i> mRNA level, while it downregulated <i>Prkcg</i> and <i>Mkrn3</i> expression. Therefore, this study provided direct evidence that genistein treatment could affect GnRH secretion by modulating kisspeptin receptors, SIRT1, PKC<sub>γ</sub> and MKRN3 in GT1-7 cells.<b>Abbreviations:</b> GnRH: gonadotropin-releasing hormone; HPG: hypothalamic-pituitary-gonadal; KNDy: kisspeptin-neurokinin-dynorphin; LH: luteinizing hormone; FSH: follicle-stimulating hormone; ARC: arcuate nucleus; ER: estrogen receptor; SIRT1: silent information regulator 1; PKCγ: protein kinase c γ: MKRN3: makorin ring finger protein 3; LC: lethal concentration; PI: propidium iodide; ECL: chemiluminescence; BCA: bicinchoninic acid assay; PBS: phosphate-buffered saline; CT: fluorescence reached threshold; PVDF: polyvinylidene difluoride.</p>","PeriodicalId":22184,"journal":{"name":"Systems Biology in Reproductive Medicine","volume":"68 2","pages":"138-150"},"PeriodicalIF":2.1000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Genistein affects gonadotrophin-releasing hormone secretion in GT1-7 cells via modulating kisspeptin receptor and key regulators.\",\"authors\":\"Jingyuan Xiong, Ye Tian, Aru Ling, Zhenmi Liu, Li Zhao, Guo Cheng\",\"doi\":\"10.1080/19396368.2021.2003910\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Epidemiological studies have shown that genistein, an isoflavonoid phytoestrogen from soybean, affects endocrine and reproductive systems and alters pubertal onset. Administration of genistein in mice could impact the electrophysiology of hypothalamic neurons associated with the secretion of gonadotropin-releasing hormone (GnRH), a key component of hypothalamic-pituitary-gonadal (HPG) axis that governs hormone release and reproductive maturation. However, whether genistein could directly influence GnRH secretion in GnRH-specific neurons requires further investigation. Here, mouse hypothalamic GT1-7 neurons were recruited as a GnRH-expressing model to directly evaluate the effect and mechanisms of genistein on GnRH release. Results from this study demonstrated that genistein treatment decreased cell viability, impacted cell cycle distribution, and induced apoptosis of GT1-7 cells. A high concentration of genistein (20 μM) significantly increased GnRH secretion by 122.4% compared to the control. Since GnRH release is regulated by components of the kisspeptin-neurokinin-dynorphin (KNDy) system and regulators including SIRT1, PKC<sub>γ,</sub> and MKRN3, their transcription and translation were examined. Significant increases were observed for the mRNA and protein levels of the KNDy component kisspeptin receptor (<i>Gpr54</i>/Kissr). Compared to the control, genistein treatment upregulated the level of <i>Sirt1</i> mRNA level, while it downregulated <i>Prkcg</i> and <i>Mkrn3</i> expression. Therefore, this study provided direct evidence that genistein treatment could affect GnRH secretion by modulating kisspeptin receptors, SIRT1, PKC<sub>γ</sub> and MKRN3 in GT1-7 cells.<b>Abbreviations:</b> GnRH: gonadotropin-releasing hormone; HPG: hypothalamic-pituitary-gonadal; KNDy: kisspeptin-neurokinin-dynorphin; LH: luteinizing hormone; FSH: follicle-stimulating hormone; ARC: arcuate nucleus; ER: estrogen receptor; SIRT1: silent information regulator 1; PKCγ: protein kinase c γ: MKRN3: makorin ring finger protein 3; LC: lethal concentration; PI: propidium iodide; ECL: chemiluminescence; BCA: bicinchoninic acid assay; PBS: phosphate-buffered saline; CT: fluorescence reached threshold; PVDF: polyvinylidene difluoride.</p>\",\"PeriodicalId\":22184,\"journal\":{\"name\":\"Systems Biology in Reproductive Medicine\",\"volume\":\"68 2\",\"pages\":\"138-150\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2022-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Systems Biology in Reproductive Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/19396368.2021.2003910\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/1/5 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"ANDROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systems Biology in Reproductive Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/19396368.2021.2003910","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/1/5 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ANDROLOGY","Score":null,"Total":0}
Genistein affects gonadotrophin-releasing hormone secretion in GT1-7 cells via modulating kisspeptin receptor and key regulators.
Epidemiological studies have shown that genistein, an isoflavonoid phytoestrogen from soybean, affects endocrine and reproductive systems and alters pubertal onset. Administration of genistein in mice could impact the electrophysiology of hypothalamic neurons associated with the secretion of gonadotropin-releasing hormone (GnRH), a key component of hypothalamic-pituitary-gonadal (HPG) axis that governs hormone release and reproductive maturation. However, whether genistein could directly influence GnRH secretion in GnRH-specific neurons requires further investigation. Here, mouse hypothalamic GT1-7 neurons were recruited as a GnRH-expressing model to directly evaluate the effect and mechanisms of genistein on GnRH release. Results from this study demonstrated that genistein treatment decreased cell viability, impacted cell cycle distribution, and induced apoptosis of GT1-7 cells. A high concentration of genistein (20 μM) significantly increased GnRH secretion by 122.4% compared to the control. Since GnRH release is regulated by components of the kisspeptin-neurokinin-dynorphin (KNDy) system and regulators including SIRT1, PKCγ, and MKRN3, their transcription and translation were examined. Significant increases were observed for the mRNA and protein levels of the KNDy component kisspeptin receptor (Gpr54/Kissr). Compared to the control, genistein treatment upregulated the level of Sirt1 mRNA level, while it downregulated Prkcg and Mkrn3 expression. Therefore, this study provided direct evidence that genistein treatment could affect GnRH secretion by modulating kisspeptin receptors, SIRT1, PKCγ and MKRN3 in GT1-7 cells.Abbreviations: GnRH: gonadotropin-releasing hormone; HPG: hypothalamic-pituitary-gonadal; KNDy: kisspeptin-neurokinin-dynorphin; LH: luteinizing hormone; FSH: follicle-stimulating hormone; ARC: arcuate nucleus; ER: estrogen receptor; SIRT1: silent information regulator 1; PKCγ: protein kinase c γ: MKRN3: makorin ring finger protein 3; LC: lethal concentration; PI: propidium iodide; ECL: chemiluminescence; BCA: bicinchoninic acid assay; PBS: phosphate-buffered saline; CT: fluorescence reached threshold; PVDF: polyvinylidene difluoride.
期刊介绍:
Systems Biology in Reproductive Medicine, SBiRM, publishes Research Articles, Communications, Applications Notes that include protocols a Clinical Corner that includes case reports, Review Articles and Hypotheses and Letters to the Editor on human and animal reproduction. The journal will highlight the use of systems approaches including genomic, cellular, proteomic, metabolomic, bioinformatic, molecular, and biochemical, to address fundamental questions in reproductive biology, reproductive medicine, and translational research. The journal publishes research involving human and animal gametes, stem cells, developmental biology and toxicology, and clinical care in reproductive medicine. Specific areas of interest to the journal include: male factor infertility and germ cell biology, reproductive technologies (gamete micro-manipulation and cryopreservation, in vitro fertilization/embryo transfer (IVF/ET) and contraception. Research that is directed towards developing new or enhanced technologies for clinical medicine or scientific research in reproduction is of significant interest to the journal.