肌萎缩性侧索硬化症的小胶质细胞TREM2

IF 2.7 4区 医学 Q2 DEVELOPMENTAL BIOLOGY Developmental Neurobiology Pub Date : 2021-12-07 DOI:10.1002/dneu.22864
Manling Xie, Shunyi Zhao, Dale B. Bosco, Aivi Nguyen, Long-Jun Wu
{"title":"肌萎缩性侧索硬化症的小胶质细胞TREM2","authors":"Manling Xie,&nbsp;Shunyi Zhao,&nbsp;Dale B. Bosco,&nbsp;Aivi Nguyen,&nbsp;Long-Jun Wu","doi":"10.1002/dneu.22864","DOIUrl":null,"url":null,"abstract":"<p>Amyotrophic lateral sclerosis (ALS), also known as Lou Gehrig's disease, is an aggressive motor neuron degenerative disease characterized by selective loss of both upper and lower motor neurons. The mechanisms underlying disease initiation and progression are poorly understood. The involvement of nonmotor neuraxis emphasizes the contribution of glial cells in disease progress. Microglia comprise a unique subset of glial cells and are the principal immune cells in the central nervous system (CNS). Triggering receptor expressed on myeloid cell 2 (TREM2) is a surface receptor that, within the CNS, is exclusively expressed on microglia and plays crucial roles in microglial proliferation, migration, activation, metabolism, and phagocytosis. Genetic evidence has linked TREM2 to neurodegenerative diseases including ALS, but its function in ALS pathogenesis is largely unknown. In this review, we summarize how microglial activation, with a specific focus on TREM2 function, affects ALS progression clinically and experimentally. Understanding microglial TREM2 function will help pinpoint the molecular target for ALS treatment.</p>","PeriodicalId":11300,"journal":{"name":"Developmental Neurobiology","volume":"82 1","pages":"125-137"},"PeriodicalIF":2.7000,"publicationDate":"2021-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8898078/pdf/nihms-1768807.pdf","citationCount":"13","resultStr":"{\"title\":\"Microglial TREM2 in amyotrophic lateral sclerosis\",\"authors\":\"Manling Xie,&nbsp;Shunyi Zhao,&nbsp;Dale B. Bosco,&nbsp;Aivi Nguyen,&nbsp;Long-Jun Wu\",\"doi\":\"10.1002/dneu.22864\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Amyotrophic lateral sclerosis (ALS), also known as Lou Gehrig's disease, is an aggressive motor neuron degenerative disease characterized by selective loss of both upper and lower motor neurons. The mechanisms underlying disease initiation and progression are poorly understood. The involvement of nonmotor neuraxis emphasizes the contribution of glial cells in disease progress. Microglia comprise a unique subset of glial cells and are the principal immune cells in the central nervous system (CNS). Triggering receptor expressed on myeloid cell 2 (TREM2) is a surface receptor that, within the CNS, is exclusively expressed on microglia and plays crucial roles in microglial proliferation, migration, activation, metabolism, and phagocytosis. Genetic evidence has linked TREM2 to neurodegenerative diseases including ALS, but its function in ALS pathogenesis is largely unknown. In this review, we summarize how microglial activation, with a specific focus on TREM2 function, affects ALS progression clinically and experimentally. Understanding microglial TREM2 function will help pinpoint the molecular target for ALS treatment.</p>\",\"PeriodicalId\":11300,\"journal\":{\"name\":\"Developmental Neurobiology\",\"volume\":\"82 1\",\"pages\":\"125-137\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2021-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8898078/pdf/nihms-1768807.pdf\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Developmental Neurobiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/dneu.22864\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"DEVELOPMENTAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Developmental Neurobiology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/dneu.22864","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 13

摘要

肌萎缩性侧索硬化症(ALS),也称为Lou Gehrig病,是一种侵袭性运动神经元退行性疾病,其特征是上下运动神经元选择性丧失。疾病发生和发展的机制尚不清楚。非运动神经轴的参与强调了神经胶质细胞在疾病进展中的作用。小胶质细胞是神经胶质细胞的一个独特亚群,是中枢神经系统(CNS)的主要免疫细胞。髓样细胞2触发受体(TREM2)是一种在中枢神经系统内仅在小胶质细胞上表达的表面受体,在小胶质细胞的增殖、迁移、活化、代谢和吞噬过程中起着至关重要的作用。遗传证据已将TREM2与包括ALS在内的神经退行性疾病联系起来,但其在ALS发病机制中的功能在很大程度上是未知的。在这篇综述中,我们总结了小胶质细胞激活,特别是TREM2功能,如何在临床和实验中影响ALS的进展。了解小胶质细胞TREM2的功能将有助于确定ALS治疗的分子靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Microglial TREM2 in amyotrophic lateral sclerosis

Amyotrophic lateral sclerosis (ALS), also known as Lou Gehrig's disease, is an aggressive motor neuron degenerative disease characterized by selective loss of both upper and lower motor neurons. The mechanisms underlying disease initiation and progression are poorly understood. The involvement of nonmotor neuraxis emphasizes the contribution of glial cells in disease progress. Microglia comprise a unique subset of glial cells and are the principal immune cells in the central nervous system (CNS). Triggering receptor expressed on myeloid cell 2 (TREM2) is a surface receptor that, within the CNS, is exclusively expressed on microglia and plays crucial roles in microglial proliferation, migration, activation, metabolism, and phagocytosis. Genetic evidence has linked TREM2 to neurodegenerative diseases including ALS, but its function in ALS pathogenesis is largely unknown. In this review, we summarize how microglial activation, with a specific focus on TREM2 function, affects ALS progression clinically and experimentally. Understanding microglial TREM2 function will help pinpoint the molecular target for ALS treatment.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Developmental Neurobiology
Developmental Neurobiology 生物-发育生物学
CiteScore
6.50
自引率
0.00%
发文量
45
审稿时长
4-8 weeks
期刊介绍: Developmental Neurobiology (previously the Journal of Neurobiology ) publishes original research articles on development, regeneration, repair and plasticity of the nervous system and on the ontogeny of behavior. High quality contributions in these areas are solicited, with an emphasis on experimental as opposed to purely descriptive work. The Journal also will consider manuscripts reporting novel approaches and techniques for the study of the development of the nervous system as well as occasional special issues on topics of significant current interest. We welcome suggestions on possible topics from our readers.
期刊最新文献
Defective Hippocampal Primary Ciliary Function and Aberrant LKB1/AMPK Signaling Pathway Are Associated With the Inhibition of Autophagic Activity in Offspring Born to Mothers of Advanced Maternal Age. Effects of Cannabidiol Isolated or in Association With Risperidone in an Animal Model of Autism. Issue Information Cellularity Defects Are Not Ubiquitous in the Brains of Fetuses With Down Syndrome Dysregulation of parvalbumin expression and neurotransmitter imbalance in the auditory cortex of the BTBR mouse model of autism spectrum disorder
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1