Sophia Karouzaki, Charoula Peta, Emmanouella Tsirimonaki, George Leondaritis, Kostas Vougas, George T Tsangaris, Dimitra Mangoura
{"title":"脂筏的完整性对催乳素诱导的小鼠胚胎干细胞有丝分裂至关重要。","authors":"Sophia Karouzaki, Charoula Peta, Emmanouella Tsirimonaki, George Leondaritis, Kostas Vougas, George T Tsangaris, Dimitra Mangoura","doi":"10.1387/ijdb.210194dm","DOIUrl":null,"url":null,"abstract":"<p><p>Embryonic stem cells, ESCs, retain the capacity to self-renew, yet, the protein machinery essential in maintaining this undifferentiated status remains largely undefined. Signalling interactions are initiated and enhanced at the plasma membrane lipid rafts, within constraints and regulations applied by the actin and tubulin cytoskeleton systems. First, we undertook a comprehensive approach using two-dimensional gel electrophoresis and mass spectrometry analysis combined with Western blotting and immunofluorescence analyses at the single cell level to compile the proteome profile of detergent-free preparations of lipid rafts of E14 mouse embryonic stem cells. In comparison with the proteomic profiles of other membrane fractions, recovery of actin and tubulin network proteins, including folding chaperones, was impressively high. At equally high frequency, we detected annexins, pleiotropic proteins that may bind membrane lipids and actin filaments to regulate important membrane processes, and we validated their expression in lipid rafts. Next, we tested whether lipid raft integrity is required for completion of mitogenic signalling pathways. Disruption of the rafts with the cholesterol sequestering methyl-β-cyclodextrin (MCD) greatly downregulated the mitotic index of ESCs, in a dose- and time of exposure-dependent manner. Moreover, MCD greatly reduced the mitogenic actions of prolactin, a hormone known to stimulate proliferation in a great variety of stem and progenitor cells. Taken together, our data postulate that lipid rafts in ESCs act in close association with the actin and tubulin cytoskeletons to support signal compartmentalization, especially for signalling pathways pertinent to symmetric divisions for self-renewal.</p>","PeriodicalId":50329,"journal":{"name":"International Journal of Developmental Biology","volume":"66 1-2-3","pages":"187-197"},"PeriodicalIF":1.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lipid rafts integrity is essential for prolactin-induced mitogenesis in mouse embryonic stem cells.\",\"authors\":\"Sophia Karouzaki, Charoula Peta, Emmanouella Tsirimonaki, George Leondaritis, Kostas Vougas, George T Tsangaris, Dimitra Mangoura\",\"doi\":\"10.1387/ijdb.210194dm\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Embryonic stem cells, ESCs, retain the capacity to self-renew, yet, the protein machinery essential in maintaining this undifferentiated status remains largely undefined. Signalling interactions are initiated and enhanced at the plasma membrane lipid rafts, within constraints and regulations applied by the actin and tubulin cytoskeleton systems. First, we undertook a comprehensive approach using two-dimensional gel electrophoresis and mass spectrometry analysis combined with Western blotting and immunofluorescence analyses at the single cell level to compile the proteome profile of detergent-free preparations of lipid rafts of E14 mouse embryonic stem cells. In comparison with the proteomic profiles of other membrane fractions, recovery of actin and tubulin network proteins, including folding chaperones, was impressively high. At equally high frequency, we detected annexins, pleiotropic proteins that may bind membrane lipids and actin filaments to regulate important membrane processes, and we validated their expression in lipid rafts. Next, we tested whether lipid raft integrity is required for completion of mitogenic signalling pathways. Disruption of the rafts with the cholesterol sequestering methyl-β-cyclodextrin (MCD) greatly downregulated the mitotic index of ESCs, in a dose- and time of exposure-dependent manner. Moreover, MCD greatly reduced the mitogenic actions of prolactin, a hormone known to stimulate proliferation in a great variety of stem and progenitor cells. Taken together, our data postulate that lipid rafts in ESCs act in close association with the actin and tubulin cytoskeletons to support signal compartmentalization, especially for signalling pathways pertinent to symmetric divisions for self-renewal.</p>\",\"PeriodicalId\":50329,\"journal\":{\"name\":\"International Journal of Developmental Biology\",\"volume\":\"66 1-2-3\",\"pages\":\"187-197\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Developmental Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1387/ijdb.210194dm\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"DEVELOPMENTAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Developmental Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1387/ijdb.210194dm","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
Lipid rafts integrity is essential for prolactin-induced mitogenesis in mouse embryonic stem cells.
Embryonic stem cells, ESCs, retain the capacity to self-renew, yet, the protein machinery essential in maintaining this undifferentiated status remains largely undefined. Signalling interactions are initiated and enhanced at the plasma membrane lipid rafts, within constraints and regulations applied by the actin and tubulin cytoskeleton systems. First, we undertook a comprehensive approach using two-dimensional gel electrophoresis and mass spectrometry analysis combined with Western blotting and immunofluorescence analyses at the single cell level to compile the proteome profile of detergent-free preparations of lipid rafts of E14 mouse embryonic stem cells. In comparison with the proteomic profiles of other membrane fractions, recovery of actin and tubulin network proteins, including folding chaperones, was impressively high. At equally high frequency, we detected annexins, pleiotropic proteins that may bind membrane lipids and actin filaments to regulate important membrane processes, and we validated their expression in lipid rafts. Next, we tested whether lipid raft integrity is required for completion of mitogenic signalling pathways. Disruption of the rafts with the cholesterol sequestering methyl-β-cyclodextrin (MCD) greatly downregulated the mitotic index of ESCs, in a dose- and time of exposure-dependent manner. Moreover, MCD greatly reduced the mitogenic actions of prolactin, a hormone known to stimulate proliferation in a great variety of stem and progenitor cells. Taken together, our data postulate that lipid rafts in ESCs act in close association with the actin and tubulin cytoskeletons to support signal compartmentalization, especially for signalling pathways pertinent to symmetric divisions for self-renewal.
期刊介绍:
The International Journal of Developmental Biology (ISSN: 0214-
6282) is an independent, not for profit scholarly journal, published by
scientists, for scientists. The journal publishes papers which throw
light on our understanding of animal and plant developmental mechanisms in health and disease and, in particular, research which elucidates the developmental principles underlying stem cell properties
and cancer. Technical, historical or theoretical approaches also fall
within the scope of the journal. Criteria for acceptance include scientific excellence, novelty and quality of presentation of data and illustrations. Advantages of publishing in the journal include: rapid
publication; free unlimited color reproduction; no page charges; free
publication of online supplementary material; free publication of audio
files (MP3 type); one-to-one personalized attention at all stages
during the editorial process. An easy online submission facility and an
open online access option, by means of which papers can be published without any access restrictions. In keeping with its mission, the
journal offers free online subscriptions to academic institutions in
developing countries.