Xinbo Wei , Depeng Yang , Zheng Xing , Chen Zhao , Li Wang , Yubo Fan , Huan Nie , Haifeng Liu
{"title":"半乳糖化壳聚糖修饰槲皮素脂质体可预防LPS/D-GalN诱导的急性肝损伤","authors":"Xinbo Wei , Depeng Yang , Zheng Xing , Chen Zhao , Li Wang , Yubo Fan , Huan Nie , Haifeng Liu","doi":"10.1016/j.msec.2021.112527","DOIUrl":null,"url":null,"abstract":"<div><p>Quercetin (Que) has been proved to have various biological activities, including anti-oxidation, anti-inflammation and anti-virus, showing great potential in liver protection. However, its water insolubility leads to low bioavailability. Therefore, the development of a suitable drug delivery fashion is imminent. In recent years, liposomes have been widely used in the fields of drug delivery and gene transfer thanks to the cell membrane like structure, easy surface-modification and high encapsulation efficiency. Herein, we fabricated Que loaded anionic liposomes. Galactosylated chitosan (GC) was simply attached to the surfaces of liposomes through electrostatic adsorption to achieve targeted delivery by binding to asialoglycoprotein receptor (ASGPR). The results showed that Que loaded liposomes modified with GC (GC-Que-Lipo) could enrich the liver in mice through tail vein injection. Liposomes could achieve sustained drug release and GC-Que-Lipo promoted M2 polarization of macrophages. More importantly, it could maintain low content of AST, ALT, ALP and high level of GSH while reducing lipid oxidation, thereby protecting the liver from damage in acute liver injury model. In general, we expect to be able to acquire targeted and efficient delivery of quercetin through a facile approach, thus fulfill the prevention and treatment of liver diseases.</p></div>","PeriodicalId":18212,"journal":{"name":"Materials science & engineering. C, Materials for biological applications","volume":"131 ","pages":"Article 112527"},"PeriodicalIF":8.1000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0928493121006676/pdfft?md5=b18408ff0dd416b5d8931728fe81496c&pid=1-s2.0-S0928493121006676-main.pdf","citationCount":"14","resultStr":"{\"title\":\"Quercetin loaded liposomes modified with galactosylated chitosan prevent LPS/D-GalN induced acute liver injury\",\"authors\":\"Xinbo Wei , Depeng Yang , Zheng Xing , Chen Zhao , Li Wang , Yubo Fan , Huan Nie , Haifeng Liu\",\"doi\":\"10.1016/j.msec.2021.112527\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Quercetin (Que) has been proved to have various biological activities, including anti-oxidation, anti-inflammation and anti-virus, showing great potential in liver protection. However, its water insolubility leads to low bioavailability. Therefore, the development of a suitable drug delivery fashion is imminent. In recent years, liposomes have been widely used in the fields of drug delivery and gene transfer thanks to the cell membrane like structure, easy surface-modification and high encapsulation efficiency. Herein, we fabricated Que loaded anionic liposomes. Galactosylated chitosan (GC) was simply attached to the surfaces of liposomes through electrostatic adsorption to achieve targeted delivery by binding to asialoglycoprotein receptor (ASGPR). The results showed that Que loaded liposomes modified with GC (GC-Que-Lipo) could enrich the liver in mice through tail vein injection. Liposomes could achieve sustained drug release and GC-Que-Lipo promoted M2 polarization of macrophages. More importantly, it could maintain low content of AST, ALT, ALP and high level of GSH while reducing lipid oxidation, thereby protecting the liver from damage in acute liver injury model. In general, we expect to be able to acquire targeted and efficient delivery of quercetin through a facile approach, thus fulfill the prevention and treatment of liver diseases.</p></div>\",\"PeriodicalId\":18212,\"journal\":{\"name\":\"Materials science & engineering. C, Materials for biological applications\",\"volume\":\"131 \",\"pages\":\"Article 112527\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0928493121006676/pdfft?md5=b18408ff0dd416b5d8931728fe81496c&pid=1-s2.0-S0928493121006676-main.pdf\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials science & engineering. C, Materials for biological applications\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0928493121006676\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials science & engineering. C, Materials for biological applications","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0928493121006676","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Quercetin (Que) has been proved to have various biological activities, including anti-oxidation, anti-inflammation and anti-virus, showing great potential in liver protection. However, its water insolubility leads to low bioavailability. Therefore, the development of a suitable drug delivery fashion is imminent. In recent years, liposomes have been widely used in the fields of drug delivery and gene transfer thanks to the cell membrane like structure, easy surface-modification and high encapsulation efficiency. Herein, we fabricated Que loaded anionic liposomes. Galactosylated chitosan (GC) was simply attached to the surfaces of liposomes through electrostatic adsorption to achieve targeted delivery by binding to asialoglycoprotein receptor (ASGPR). The results showed that Que loaded liposomes modified with GC (GC-Que-Lipo) could enrich the liver in mice through tail vein injection. Liposomes could achieve sustained drug release and GC-Que-Lipo promoted M2 polarization of macrophages. More importantly, it could maintain low content of AST, ALT, ALP and high level of GSH while reducing lipid oxidation, thereby protecting the liver from damage in acute liver injury model. In general, we expect to be able to acquire targeted and efficient delivery of quercetin through a facile approach, thus fulfill the prevention and treatment of liver diseases.
期刊介绍:
Materials Today is a community committed to fostering the creation and sharing of knowledge and experience in materials science. With the support of Elsevier, this community publishes high-impact peer-reviewed journals, organizes academic conferences, and conducts educational webinars, among other initiatives. It serves as a hub for advancing materials science and facilitating collaboration within the scientific community.