SSRF大分子晶体束线2级生物安全性的实现。

IF 2 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING American journal of nuclear medicine and molecular imaging Pub Date : 2021-12-15 eCollection Date: 2021-01-01
Huating Kong, Minjun Li, Qin Xu, Huan Zhou, Feng Yu, Qisheng Wang
{"title":"SSRF大分子晶体束线2级生物安全性的实现。","authors":"Huating Kong,&nbsp;Minjun Li,&nbsp;Qin Xu,&nbsp;Huan Zhou,&nbsp;Feng Yu,&nbsp;Qisheng Wang","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Macromolecular crystallography is commonly used to determine the structure of biological macromolecules. Currently the beamlines at synchrotron radiation facilities play an important role in macromolecular crystallography, and have produced an enormous number of molecular structures to help solve scientific questions and support applications. Structure information makes significant contributions to the virus-related research as well. However, it is mandatory to be protected the operators under a compatible biosafety infrastructure when a pathological agent is set up in a beamline. Here a level-2 biosafety protection for a macromolecular crystallography beamline at Shanghai Synchrotron Radiation Facility (SSRF) is introduced. To fulfill the biosafety in a radioactive environment, a dedicated design is implemented. Since the beamline will be opened to the external users from nationwide research units, the management process and experimental method are also drawn up.</p>","PeriodicalId":7572,"journal":{"name":"American journal of nuclear medicine and molecular imaging","volume":"11 6","pages":"529-536"},"PeriodicalIF":2.0000,"publicationDate":"2021-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8727877/pdf/ajnmmi0011-0529.pdf","citationCount":"0","resultStr":"{\"title\":\"Implementation of level-2 biosafety for a macromolecular crystallography beamline at SSRF.\",\"authors\":\"Huating Kong,&nbsp;Minjun Li,&nbsp;Qin Xu,&nbsp;Huan Zhou,&nbsp;Feng Yu,&nbsp;Qisheng Wang\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Macromolecular crystallography is commonly used to determine the structure of biological macromolecules. Currently the beamlines at synchrotron radiation facilities play an important role in macromolecular crystallography, and have produced an enormous number of molecular structures to help solve scientific questions and support applications. Structure information makes significant contributions to the virus-related research as well. However, it is mandatory to be protected the operators under a compatible biosafety infrastructure when a pathological agent is set up in a beamline. Here a level-2 biosafety protection for a macromolecular crystallography beamline at Shanghai Synchrotron Radiation Facility (SSRF) is introduced. To fulfill the biosafety in a radioactive environment, a dedicated design is implemented. Since the beamline will be opened to the external users from nationwide research units, the management process and experimental method are also drawn up.</p>\",\"PeriodicalId\":7572,\"journal\":{\"name\":\"American journal of nuclear medicine and molecular imaging\",\"volume\":\"11 6\",\"pages\":\"529-536\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2021-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8727877/pdf/ajnmmi0011-0529.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American journal of nuclear medicine and molecular imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of nuclear medicine and molecular imaging","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

摘要

大分子晶体学是测定生物大分子结构的常用方法。目前,同步辐射设施中的光束线在大分子晶体学中起着重要的作用,并产生了大量的分子结构,以帮助解决科学问题和支持应用。结构信息对病毒相关研究也有重要贡献。然而,当病理制剂在光束线中设置时,必须在兼容的生物安全基础设施下保护操作人员。本文介绍了上海同步辐射设施(SSRF)大分子晶体束线的二级生物安全防护措施。为了满足放射性环境下的生物安全性,我们实施了专门的设计。由于光束线将向全国研究单位的外部用户开放,因此还制定了管理流程和实验方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Implementation of level-2 biosafety for a macromolecular crystallography beamline at SSRF.

Macromolecular crystallography is commonly used to determine the structure of biological macromolecules. Currently the beamlines at synchrotron radiation facilities play an important role in macromolecular crystallography, and have produced an enormous number of molecular structures to help solve scientific questions and support applications. Structure information makes significant contributions to the virus-related research as well. However, it is mandatory to be protected the operators under a compatible biosafety infrastructure when a pathological agent is set up in a beamline. Here a level-2 biosafety protection for a macromolecular crystallography beamline at Shanghai Synchrotron Radiation Facility (SSRF) is introduced. To fulfill the biosafety in a radioactive environment, a dedicated design is implemented. Since the beamline will be opened to the external users from nationwide research units, the management process and experimental method are also drawn up.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
American journal of nuclear medicine and molecular imaging
American journal of nuclear medicine and molecular imaging RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
自引率
4.00%
发文量
4
期刊介绍: The scope of AJNMMI encompasses all areas of molecular imaging, including but not limited to: positron emission tomography (PET), single-photon emission computed tomography (SPECT), molecular magnetic resonance imaging, magnetic resonance spectroscopy, optical bioluminescence, optical fluorescence, targeted ultrasound, photoacoustic imaging, etc. AJNMMI welcomes original and review articles on both clinical investigation and preclinical research. Occasionally, special topic issues, short communications, editorials, and invited perspectives will also be published. Manuscripts, including figures and tables, must be original and not under consideration by another journal.
期刊最新文献
18F-FDG PET/CT findings in a mucosa-associated lymphoid tissue lymphoma patient coexisting with primary myelofibrosis. Fully automated radiosynthesis of [18F]FCPPC for imaging microglia with PET. PET, SPECT, and MRI imaging for evaluation of Parkinson's disease. Systemic progression of primary cutaneous anaplastic large cell lymphoma in 18F-FDG PET/CT: a case report. 18F-FDG-PET and other imaging modalities in the diagnosis and management of inflammatory bowel disease.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1