Amritpal Dhaliwal, Felicity R Williams, Jonathan I Quinlan, Sophie L Allen, Carolyn Greig, Andrew Filer, Karim Raza, Subrata Ghosh, Gareth G Lavery, Philip N Newsome, Surabhi Choudhary, Leigh Breen, Matthew J Armstrong, Ahmed M Elsharkawy, Janet M Lord
{"title":"慢性炎症性疾病中肌肉减少的机制评价:一项前瞻性队列研究方案","authors":"Amritpal Dhaliwal, Felicity R Williams, Jonathan I Quinlan, Sophie L Allen, Carolyn Greig, Andrew Filer, Karim Raza, Subrata Ghosh, Gareth G Lavery, Philip N Newsome, Surabhi Choudhary, Leigh Breen, Matthew J Armstrong, Ahmed M Elsharkawy, Janet M Lord","doi":"10.1186/s13395-021-00282-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Several chronic inflammatory diseases co-exist with and accelerate sarcopenia (reduction in muscle strength, function and mass) and negatively impact on both morbidity and mortality. There is currently limited research on the extent of sarcopenia in such conditions, how to accurately assess it and whether there are generic or disease-specific mechanisms driving sarcopenia. Therefore, this study aims to identify potential mechanisms driving sarcopenia within chronic inflammatory disease via a multi-modal approach; in an attempt to help define potential interventions for future use.</p><p><strong>Methods: </strong>This prospective cohort study will consist of a multi-modal assessment of sarcopenia and its underlying mechanisms. Recruitment will target three chronic inflammatory diseases: chronic liver disease (CLD) (n=50), with a subset of NAFLD (n=20), inflammatory bowel disease (IBD) (n=50) and rheumatoid arthritis (RA) (n=50) both before and after therapeutic intervention. In addition, 20 age and sex matched healthy individuals will be recruited for comparison. Participants will undergo 4 assessment visits at weeks 0, 2, 12 and 24. Visits will consist of the following assessments: blood tests, anthropometrics, functional assessment, quadriceps muscle imaging, actigraphy, quality of life questionnaires, food diary collection and muscle biopsy of the vastus lateralis (at weeks 2 and 24 only). In addition, stool and urine samples will be collected for future microbiome and metabolomics analysis.</p><p><strong>Discussion: </strong>This is the first study to use a multi-modal assessment model to phenotype sarcopenia in these chronic inflammatory diseases. We hope to identify generic as well as disease-specific mechanisms driving sarcopenia. We appreciate that these cohorts do require separate standards of care treatments which limit comparison between groups.</p><p><strong>Ethics and dissemination: </strong>The study is approved by the Health Research Authority - West Midlands Solihull Research Ethics Service Committee Authority (REC reference: 18/WM/0167). Recruitment commenced in January 2019 and will continue until July 2021. The study was halted in March 2020 and again in January 2021 with the COVID-19 pandemic. The findings will be disseminated through peer-reviewed publications and conference presentations. All data will be stored on a secure server.</p><p><strong>Trial registration: </strong>ClinicalTrials.gov Identifier: NCT04734496.</p>","PeriodicalId":21747,"journal":{"name":"Skeletal Muscle","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2021-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8665319/pdf/","citationCount":"4","resultStr":"{\"title\":\"Evaluation of the mechanisms of sarcopenia in chronic inflammatory disease: protocol for a prospective cohort study.\",\"authors\":\"Amritpal Dhaliwal, Felicity R Williams, Jonathan I Quinlan, Sophie L Allen, Carolyn Greig, Andrew Filer, Karim Raza, Subrata Ghosh, Gareth G Lavery, Philip N Newsome, Surabhi Choudhary, Leigh Breen, Matthew J Armstrong, Ahmed M Elsharkawy, Janet M Lord\",\"doi\":\"10.1186/s13395-021-00282-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Several chronic inflammatory diseases co-exist with and accelerate sarcopenia (reduction in muscle strength, function and mass) and negatively impact on both morbidity and mortality. There is currently limited research on the extent of sarcopenia in such conditions, how to accurately assess it and whether there are generic or disease-specific mechanisms driving sarcopenia. Therefore, this study aims to identify potential mechanisms driving sarcopenia within chronic inflammatory disease via a multi-modal approach; in an attempt to help define potential interventions for future use.</p><p><strong>Methods: </strong>This prospective cohort study will consist of a multi-modal assessment of sarcopenia and its underlying mechanisms. Recruitment will target three chronic inflammatory diseases: chronic liver disease (CLD) (n=50), with a subset of NAFLD (n=20), inflammatory bowel disease (IBD) (n=50) and rheumatoid arthritis (RA) (n=50) both before and after therapeutic intervention. In addition, 20 age and sex matched healthy individuals will be recruited for comparison. Participants will undergo 4 assessment visits at weeks 0, 2, 12 and 24. Visits will consist of the following assessments: blood tests, anthropometrics, functional assessment, quadriceps muscle imaging, actigraphy, quality of life questionnaires, food diary collection and muscle biopsy of the vastus lateralis (at weeks 2 and 24 only). In addition, stool and urine samples will be collected for future microbiome and metabolomics analysis.</p><p><strong>Discussion: </strong>This is the first study to use a multi-modal assessment model to phenotype sarcopenia in these chronic inflammatory diseases. We hope to identify generic as well as disease-specific mechanisms driving sarcopenia. We appreciate that these cohorts do require separate standards of care treatments which limit comparison between groups.</p><p><strong>Ethics and dissemination: </strong>The study is approved by the Health Research Authority - West Midlands Solihull Research Ethics Service Committee Authority (REC reference: 18/WM/0167). Recruitment commenced in January 2019 and will continue until July 2021. The study was halted in March 2020 and again in January 2021 with the COVID-19 pandemic. The findings will be disseminated through peer-reviewed publications and conference presentations. All data will be stored on a secure server.</p><p><strong>Trial registration: </strong>ClinicalTrials.gov Identifier: NCT04734496.</p>\",\"PeriodicalId\":21747,\"journal\":{\"name\":\"Skeletal Muscle\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2021-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8665319/pdf/\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Skeletal Muscle\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s13395-021-00282-5\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Skeletal Muscle","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13395-021-00282-5","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Evaluation of the mechanisms of sarcopenia in chronic inflammatory disease: protocol for a prospective cohort study.
Background: Several chronic inflammatory diseases co-exist with and accelerate sarcopenia (reduction in muscle strength, function and mass) and negatively impact on both morbidity and mortality. There is currently limited research on the extent of sarcopenia in such conditions, how to accurately assess it and whether there are generic or disease-specific mechanisms driving sarcopenia. Therefore, this study aims to identify potential mechanisms driving sarcopenia within chronic inflammatory disease via a multi-modal approach; in an attempt to help define potential interventions for future use.
Methods: This prospective cohort study will consist of a multi-modal assessment of sarcopenia and its underlying mechanisms. Recruitment will target three chronic inflammatory diseases: chronic liver disease (CLD) (n=50), with a subset of NAFLD (n=20), inflammatory bowel disease (IBD) (n=50) and rheumatoid arthritis (RA) (n=50) both before and after therapeutic intervention. In addition, 20 age and sex matched healthy individuals will be recruited for comparison. Participants will undergo 4 assessment visits at weeks 0, 2, 12 and 24. Visits will consist of the following assessments: blood tests, anthropometrics, functional assessment, quadriceps muscle imaging, actigraphy, quality of life questionnaires, food diary collection and muscle biopsy of the vastus lateralis (at weeks 2 and 24 only). In addition, stool and urine samples will be collected for future microbiome and metabolomics analysis.
Discussion: This is the first study to use a multi-modal assessment model to phenotype sarcopenia in these chronic inflammatory diseases. We hope to identify generic as well as disease-specific mechanisms driving sarcopenia. We appreciate that these cohorts do require separate standards of care treatments which limit comparison between groups.
Ethics and dissemination: The study is approved by the Health Research Authority - West Midlands Solihull Research Ethics Service Committee Authority (REC reference: 18/WM/0167). Recruitment commenced in January 2019 and will continue until July 2021. The study was halted in March 2020 and again in January 2021 with the COVID-19 pandemic. The findings will be disseminated through peer-reviewed publications and conference presentations. All data will be stored on a secure server.
期刊介绍:
The only open access journal in its field, Skeletal Muscle publishes novel, cutting-edge research and technological advancements that investigate the molecular mechanisms underlying the biology of skeletal muscle. Reflecting the breadth of research in this area, the journal welcomes manuscripts about the development, metabolism, the regulation of mass and function, aging, degeneration, dystrophy and regeneration of skeletal muscle, with an emphasis on understanding adult skeletal muscle, its maintenance, and its interactions with non-muscle cell types and regulatory modulators.
Main areas of interest include:
-differentiation of skeletal muscle-
atrophy and hypertrophy of skeletal muscle-
aging of skeletal muscle-
regeneration and degeneration of skeletal muscle-
biology of satellite and satellite-like cells-
dystrophic degeneration of skeletal muscle-
energy and glucose homeostasis in skeletal muscle-
non-dystrophic genetic diseases of skeletal muscle, such as Spinal Muscular Atrophy and myopathies-
maintenance of neuromuscular junctions-
roles of ryanodine receptors and calcium signaling in skeletal muscle-
roles of nuclear receptors in skeletal muscle-
roles of GPCRs and GPCR signaling in skeletal muscle-
other relevant aspects of skeletal muscle biology.
In addition, articles on translational clinical studies that address molecular and cellular mechanisms of skeletal muscle will be published. Case reports are also encouraged for submission.
Skeletal Muscle reflects the breadth of research on skeletal muscle and bridges gaps between diverse areas of science for example cardiac cell biology and neurobiology, which share common features with respect to cell differentiation, excitatory membranes, cell-cell communication, and maintenance. Suitable articles are model and mechanism-driven, and apply statistical principles where appropriate; purely descriptive studies are of lesser interest.