Randi Liset , Janne Grønli , Roger Ekeberg Henriksen , Tone Elise Gjøtterud Henriksen , Roy Miodini Nilsen , Ståle Pallesen
{"title":"一项随机对照试验,在妊娠晚期未生育妇女中,与部分蓝阻眼镜相比,蓝阻眼镜对褪黑素的影响","authors":"Randi Liset , Janne Grønli , Roger Ekeberg Henriksen , Tone Elise Gjøtterud Henriksen , Roy Miodini Nilsen , Ståle Pallesen","doi":"10.1016/j.nbscr.2021.100074","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><p>In pregnancy melatonin regulates circadian rhythms, induce sleep, and has a neuroprotective positive effect on fetal development. Artificial blue light in the evening delays and suppresses melatonin production. Thus, we investigated the effect of blocking blue light on the melatonin profile.</p></div><div><h3>Methods</h3><p>A randomized controlled trial (n=30 blue-blocking glasses vs. n=30 control glasses with partial blue-blocking effect) including healthy nulliparous pregnant women in the beginning of the third trimester. Salivary melatonin and subjective sleep were measured before and after two weeks of intervention/control condition. Saliva was sampled at 30-min intervals from 3 h before normal bedtime. Melatonin onset was set at 4.0 pg/ml.</p></div><div><h3>Results</h3><p>Due to missing data melatonin onset was estimated for 47 participants. At posttreatment, melatonin onset advanced by 28 min in the blue-blocking group compared with the control condition (p=.019). Melatonin levels were significantly higher, favoring the blue-blocking glass condition, at clock time 20:00, 21:00 and 22:00 h, and for sample number 3 and 4. The phase angle (time interval) between melatonin onset and sleep bedtime and sleep onset time increased within the blue blocking group (+45 min and +41 min, respectively), but did not reach statistical significance compared to control condition (+13 min and +26 min, respectively).</p></div><div><h3>Conclusion</h3><p>Blocking blue light in the evening had a positive effect on the circadian system with an earlier onset and rise of melatonin levels in healthy nulliparous pregnant women. This demonstrated the effectiveness and feasibility of a simple non-pharmacological chronobiological intervention during pregnancy.</p></div>","PeriodicalId":37827,"journal":{"name":"Neurobiology of Sleep and Circadian Rhythms","volume":"12 ","pages":"Article 100074"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8728098/pdf/","citationCount":"2","resultStr":"{\"title\":\"A randomized controlled trial on the effect of blue-blocking glasses compared to partial blue-blockers on melatonin profile among nulliparous women in third trimester of the pregnancy\",\"authors\":\"Randi Liset , Janne Grønli , Roger Ekeberg Henriksen , Tone Elise Gjøtterud Henriksen , Roy Miodini Nilsen , Ståle Pallesen\",\"doi\":\"10.1016/j.nbscr.2021.100074\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Objective</h3><p>In pregnancy melatonin regulates circadian rhythms, induce sleep, and has a neuroprotective positive effect on fetal development. Artificial blue light in the evening delays and suppresses melatonin production. Thus, we investigated the effect of blocking blue light on the melatonin profile.</p></div><div><h3>Methods</h3><p>A randomized controlled trial (n=30 blue-blocking glasses vs. n=30 control glasses with partial blue-blocking effect) including healthy nulliparous pregnant women in the beginning of the third trimester. Salivary melatonin and subjective sleep were measured before and after two weeks of intervention/control condition. Saliva was sampled at 30-min intervals from 3 h before normal bedtime. Melatonin onset was set at 4.0 pg/ml.</p></div><div><h3>Results</h3><p>Due to missing data melatonin onset was estimated for 47 participants. At posttreatment, melatonin onset advanced by 28 min in the blue-blocking group compared with the control condition (p=.019). Melatonin levels were significantly higher, favoring the blue-blocking glass condition, at clock time 20:00, 21:00 and 22:00 h, and for sample number 3 and 4. The phase angle (time interval) between melatonin onset and sleep bedtime and sleep onset time increased within the blue blocking group (+45 min and +41 min, respectively), but did not reach statistical significance compared to control condition (+13 min and +26 min, respectively).</p></div><div><h3>Conclusion</h3><p>Blocking blue light in the evening had a positive effect on the circadian system with an earlier onset and rise of melatonin levels in healthy nulliparous pregnant women. This demonstrated the effectiveness and feasibility of a simple non-pharmacological chronobiological intervention during pregnancy.</p></div>\",\"PeriodicalId\":37827,\"journal\":{\"name\":\"Neurobiology of Sleep and Circadian Rhythms\",\"volume\":\"12 \",\"pages\":\"Article 100074\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8728098/pdf/\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurobiology of Sleep and Circadian Rhythms\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2451994421000158\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurobiology of Sleep and Circadian Rhythms","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2451994421000158","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
A randomized controlled trial on the effect of blue-blocking glasses compared to partial blue-blockers on melatonin profile among nulliparous women in third trimester of the pregnancy
Objective
In pregnancy melatonin regulates circadian rhythms, induce sleep, and has a neuroprotective positive effect on fetal development. Artificial blue light in the evening delays and suppresses melatonin production. Thus, we investigated the effect of blocking blue light on the melatonin profile.
Methods
A randomized controlled trial (n=30 blue-blocking glasses vs. n=30 control glasses with partial blue-blocking effect) including healthy nulliparous pregnant women in the beginning of the third trimester. Salivary melatonin and subjective sleep were measured before and after two weeks of intervention/control condition. Saliva was sampled at 30-min intervals from 3 h before normal bedtime. Melatonin onset was set at 4.0 pg/ml.
Results
Due to missing data melatonin onset was estimated for 47 participants. At posttreatment, melatonin onset advanced by 28 min in the blue-blocking group compared with the control condition (p=.019). Melatonin levels were significantly higher, favoring the blue-blocking glass condition, at clock time 20:00, 21:00 and 22:00 h, and for sample number 3 and 4. The phase angle (time interval) between melatonin onset and sleep bedtime and sleep onset time increased within the blue blocking group (+45 min and +41 min, respectively), but did not reach statistical significance compared to control condition (+13 min and +26 min, respectively).
Conclusion
Blocking blue light in the evening had a positive effect on the circadian system with an earlier onset and rise of melatonin levels in healthy nulliparous pregnant women. This demonstrated the effectiveness and feasibility of a simple non-pharmacological chronobiological intervention during pregnancy.
期刊介绍:
Neurobiology of Sleep and Circadian Rhythms is a multidisciplinary journal for the publication of original research and review articles on basic and translational research into sleep and circadian rhythms. The journal focuses on topics covering the mechanisms of sleep/wake and circadian regulation from molecular to systems level, and on the functional consequences of sleep and circadian disruption. A key aim of the journal is the translation of basic research findings to understand and treat sleep and circadian disorders. Topics include, but are not limited to: Basic and translational research, Molecular mechanisms, Genetics and epigenetics, Inflammation and immunology, Memory and learning, Neurological and neurodegenerative diseases, Neuropsychopharmacology and neuroendocrinology, Behavioral sleep and circadian disorders, Shiftwork, Social jetlag.