Frank M Balis, Cynthia Lester McCully, Christine M Busch, Elizabeth Fox, Katherine E Warren
{"title":"神经母细胞瘤循环肿瘤生物标志物GD2在非人灵长类动物体内的药代动力学。","authors":"Frank M Balis, Cynthia Lester McCully, Christine M Busch, Elizabeth Fox, Katherine E Warren","doi":"10.33393/jcb.2021.2329","DOIUrl":null,"url":null,"abstract":"ABSTRACT Background: The ganglioside GD2 is a potential circulating tumor biomarker for the childhood cancer neuroblastoma. Interpreting the levels of a circulating tumor biomarker depends in part on a knowledge of the biomarker’s clinical pharmacology. Methods: We studied the plasma and cerebrospinal fluid (CSF) pharmacokinetics of the C18 lipoform of GD2 in two nonhuman primates with indwelling subcutaneous CSF lateral ventricular reservoir systems. GD2 was quantified with a validated high-performance liquid chromatography (HPLC)/tandem mass spectrometry assay. GD2 was administered as a short intravenous infusion and frequent plasma and CSF samples were drawn over 72 hours. Results: GD2 plasma concentration declined monoexponentially with a half-life of 16 hours. Clearance was 0.0136 and 0.0131 L/h and volume of distribution (Vd) was 0.035 and 0.038 L/kg in the two animals. Vd was equivalent to plasma volume. Greater than 98% of GD2 in plasma is in a bound form consistent with its known association with lipoproteins and accounting for its limited volume of distribution. GD2 did not cross over from plasma into the CSF. Conclusions: The pharmacokinetic profile of GD2 is favorable for a circulating tumor biomarker. This study demonstrates the value of characterizing the clinical pharmacology of circulating biomarkers to better understand their clinical behavior.","PeriodicalId":37524,"journal":{"name":"Journal of Circulating Biomarkers","volume":"10 ","pages":"26-29"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/cd/4f/jcb-10-26.PMC8655510.pdf","citationCount":"1","resultStr":"{\"title\":\"Pharmacokinetics of the disialoganglioside, G<sub>D2</sub>, a circulating tumor biomarker for neuroblastoma, in nonhuman primates.\",\"authors\":\"Frank M Balis, Cynthia Lester McCully, Christine M Busch, Elizabeth Fox, Katherine E Warren\",\"doi\":\"10.33393/jcb.2021.2329\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Background: The ganglioside GD2 is a potential circulating tumor biomarker for the childhood cancer neuroblastoma. Interpreting the levels of a circulating tumor biomarker depends in part on a knowledge of the biomarker’s clinical pharmacology. Methods: We studied the plasma and cerebrospinal fluid (CSF) pharmacokinetics of the C18 lipoform of GD2 in two nonhuman primates with indwelling subcutaneous CSF lateral ventricular reservoir systems. GD2 was quantified with a validated high-performance liquid chromatography (HPLC)/tandem mass spectrometry assay. GD2 was administered as a short intravenous infusion and frequent plasma and CSF samples were drawn over 72 hours. Results: GD2 plasma concentration declined monoexponentially with a half-life of 16 hours. Clearance was 0.0136 and 0.0131 L/h and volume of distribution (Vd) was 0.035 and 0.038 L/kg in the two animals. Vd was equivalent to plasma volume. Greater than 98% of GD2 in plasma is in a bound form consistent with its known association with lipoproteins and accounting for its limited volume of distribution. GD2 did not cross over from plasma into the CSF. Conclusions: The pharmacokinetic profile of GD2 is favorable for a circulating tumor biomarker. This study demonstrates the value of characterizing the clinical pharmacology of circulating biomarkers to better understand their clinical behavior.\",\"PeriodicalId\":37524,\"journal\":{\"name\":\"Journal of Circulating Biomarkers\",\"volume\":\"10 \",\"pages\":\"26-29\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/cd/4f/jcb-10-26.PMC8655510.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Circulating Biomarkers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33393/jcb.2021.2329\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Circulating Biomarkers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33393/jcb.2021.2329","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
Pharmacokinetics of the disialoganglioside, GD2, a circulating tumor biomarker for neuroblastoma, in nonhuman primates.
ABSTRACT Background: The ganglioside GD2 is a potential circulating tumor biomarker for the childhood cancer neuroblastoma. Interpreting the levels of a circulating tumor biomarker depends in part on a knowledge of the biomarker’s clinical pharmacology. Methods: We studied the plasma and cerebrospinal fluid (CSF) pharmacokinetics of the C18 lipoform of GD2 in two nonhuman primates with indwelling subcutaneous CSF lateral ventricular reservoir systems. GD2 was quantified with a validated high-performance liquid chromatography (HPLC)/tandem mass spectrometry assay. GD2 was administered as a short intravenous infusion and frequent plasma and CSF samples were drawn over 72 hours. Results: GD2 plasma concentration declined monoexponentially with a half-life of 16 hours. Clearance was 0.0136 and 0.0131 L/h and volume of distribution (Vd) was 0.035 and 0.038 L/kg in the two animals. Vd was equivalent to plasma volume. Greater than 98% of GD2 in plasma is in a bound form consistent with its known association with lipoproteins and accounting for its limited volume of distribution. GD2 did not cross over from plasma into the CSF. Conclusions: The pharmacokinetic profile of GD2 is favorable for a circulating tumor biomarker. This study demonstrates the value of characterizing the clinical pharmacology of circulating biomarkers to better understand their clinical behavior.
期刊介绍:
Journal of Circulating Biomarkers is an international, peer-reviewed, open access scientific journal focusing on all aspects of the rapidly growing field of circulating blood-based biomarkers and diagnostics using circulating protein and lipid markers, circulating tumor cells (CTC), circulating cell-free DNA (cfDNA) and extracellular vesicles, including exosomes, microvesicles, microparticles, ectosomes and apoptotic bodies. The journal publishes high-impact articles that deal with all fields related to circulating biomarkers and diagnostics, ranging from basic science to translational and clinical applications. Papers from a wide variety of disciplines are welcome; interdisciplinary studies are especially suitable for this journal. Included within the scope are a broad array of specialties including (but not limited to) cancer, immunology, neurology, metabolic diseases, cardiovascular medicine, regenerative medicine, nosology, physiology, pathology, technological applications in diagnostics, therapeutics, vaccine, drug delivery, regenerative medicine, drug development and clinical trials. The journal also hosts reviews, perspectives and news on specific topics.