{"title":"在涉及抑制效应的额外食物提供的捕食者-猎物系统中实现最小时间生物保护和有害生物管理:一项定性调查","authors":"V S Ananth, D. K. K. Vamsi","doi":"10.1007/s10441-021-09430-2","DOIUrl":null,"url":null,"abstract":"<div><p>Theoretical and experimental studies on prey–predator systems where predator is supplied with alternate sources of food have received significant attention over the years due to their relevance in achieving biological conservation and biological control. Some of the outcomes of these studies suggest that with appropriate quality and quantity of additional food, the system can be steered towards any desired state eventually with time. One of the limitations of previous studies is that the desired state is reached asymptotically, which makes the outcomes not easily applicable in practical scenarios. To overcome this limitation, in this work, we formulate and study optimal control problems to achieve the desired outcomes in minimum (finite) time. We consider two different models of additional food provided prey–predator systems involving Holling type IV functional response (with inhibitory effect of prey). In the first scenario, additional food is incorporated implicitly into the predator’s functional response with a possibility of achieving biological conservation through co-existence of species and biological control by maintaining prey at a level that is least harmful to the system. In the second, the effect of additional food is incorporated explicitly into the predator’s compartment with the goal of pest management by maintaining prey density at a very minimal damaging level. For both cases, appropriate optimal control strategies are derived and the theoretical findings are illustrated by numerical simulations. We also discuss the ecological significance of the theoretical findings for both models.</p></div>","PeriodicalId":7057,"journal":{"name":"Acta Biotheoretica","volume":"70 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2021-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10441-021-09430-2.pdf","citationCount":"6","resultStr":"{\"title\":\"Achieving Minimum-Time Biological Conservation and Pest Management for Additional Food provided Predator–Prey Systems involving Inhibitory Effect: A Qualitative Investigation\",\"authors\":\"V S Ananth, D. K. K. Vamsi\",\"doi\":\"10.1007/s10441-021-09430-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Theoretical and experimental studies on prey–predator systems where predator is supplied with alternate sources of food have received significant attention over the years due to their relevance in achieving biological conservation and biological control. Some of the outcomes of these studies suggest that with appropriate quality and quantity of additional food, the system can be steered towards any desired state eventually with time. One of the limitations of previous studies is that the desired state is reached asymptotically, which makes the outcomes not easily applicable in practical scenarios. To overcome this limitation, in this work, we formulate and study optimal control problems to achieve the desired outcomes in minimum (finite) time. We consider two different models of additional food provided prey–predator systems involving Holling type IV functional response (with inhibitory effect of prey). In the first scenario, additional food is incorporated implicitly into the predator’s functional response with a possibility of achieving biological conservation through co-existence of species and biological control by maintaining prey at a level that is least harmful to the system. In the second, the effect of additional food is incorporated explicitly into the predator’s compartment with the goal of pest management by maintaining prey density at a very minimal damaging level. For both cases, appropriate optimal control strategies are derived and the theoretical findings are illustrated by numerical simulations. We also discuss the ecological significance of the theoretical findings for both models.</p></div>\",\"PeriodicalId\":7057,\"journal\":{\"name\":\"Acta Biotheoretica\",\"volume\":\"70 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2021-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10441-021-09430-2.pdf\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Biotheoretica\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10441-021-09430-2\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Biotheoretica","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s10441-021-09430-2","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
Achieving Minimum-Time Biological Conservation and Pest Management for Additional Food provided Predator–Prey Systems involving Inhibitory Effect: A Qualitative Investigation
Theoretical and experimental studies on prey–predator systems where predator is supplied with alternate sources of food have received significant attention over the years due to their relevance in achieving biological conservation and biological control. Some of the outcomes of these studies suggest that with appropriate quality and quantity of additional food, the system can be steered towards any desired state eventually with time. One of the limitations of previous studies is that the desired state is reached asymptotically, which makes the outcomes not easily applicable in practical scenarios. To overcome this limitation, in this work, we formulate and study optimal control problems to achieve the desired outcomes in minimum (finite) time. We consider two different models of additional food provided prey–predator systems involving Holling type IV functional response (with inhibitory effect of prey). In the first scenario, additional food is incorporated implicitly into the predator’s functional response with a possibility of achieving biological conservation through co-existence of species and biological control by maintaining prey at a level that is least harmful to the system. In the second, the effect of additional food is incorporated explicitly into the predator’s compartment with the goal of pest management by maintaining prey density at a very minimal damaging level. For both cases, appropriate optimal control strategies are derived and the theoretical findings are illustrated by numerical simulations. We also discuss the ecological significance of the theoretical findings for both models.
期刊介绍:
Acta Biotheoretica is devoted to the promotion of theoretical biology, encompassing mathematical biology and the philosophy of biology, paying special attention to the methodology of formation of biological theory.
Papers on all kind of biological theories are welcome. Interesting subjects include philosophy of biology, biomathematics, computational biology, genetics, ecology and morphology. The process of theory formation can be presented in verbal or mathematical form. Moreover, purely methodological papers can be devoted to the historical origins of the philosophy underlying biological theories and concepts.
Papers should contain clear statements of biological assumptions, and where applicable, a justification of their translation into mathematical form and a detailed discussion of the mathematical treatment. The connection to empirical data should be clarified.
Acta Biotheoretica also welcomes critical book reviews, short comments on previous papers and short notes directing attention to interesting new theoretical ideas.