{"title":"用MSn CID研究质子化路易斯A三糖的断裂机理。","authors":"Volker Iwan, Jürgen Grotemeyer","doi":"10.1177/14690667211069033","DOIUrl":null,"url":null,"abstract":"<p><p>Lewis blood group antigens are a prominent example of isomeric oligosaccharides with biological activity. Understanding the fragmentation mechanism in the gas phase is essential for their identification and assignment by mass spectrometric methods such as ESI-MS. In this work, the [M + H]<sup>+</sup> species of Lewis A trisaccharide and Lewis A trisaccharide methyl glycoside were studied by ESI-MS with FT-ICR as mass analyzer with respect to their fragmentation mechanism. The comparison between the underivatized and the methylated species has shown that the reducing end plays a key role in this mechanism. The results of this study question the existence of Z-type fragment ions after activation of the protonated species. The main product of the fragmentation are Y-type fragment ions and a combination of Y-type fragmentation and the loss of water at the reducing end instead of Z-type fragmentation. C-type fragment ions could not be detected. MS<sup>3</sup> measurements also reveal that each fragment ion only occurs with the participation of a mobile proton and the possibility of glycosidic bond cleavage after fragmentation has already occurred at the reducing end as B<sub>2</sub> fragment ion.</p>","PeriodicalId":12007,"journal":{"name":"European Journal of Mass Spectrometry","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Elucidating the Fragmentation Mechanism of Protonated Lewis A Trisaccharide using MS<sup>n</sup> CID.\",\"authors\":\"Volker Iwan, Jürgen Grotemeyer\",\"doi\":\"10.1177/14690667211069033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Lewis blood group antigens are a prominent example of isomeric oligosaccharides with biological activity. Understanding the fragmentation mechanism in the gas phase is essential for their identification and assignment by mass spectrometric methods such as ESI-MS. In this work, the [M + H]<sup>+</sup> species of Lewis A trisaccharide and Lewis A trisaccharide methyl glycoside were studied by ESI-MS with FT-ICR as mass analyzer with respect to their fragmentation mechanism. The comparison between the underivatized and the methylated species has shown that the reducing end plays a key role in this mechanism. The results of this study question the existence of Z-type fragment ions after activation of the protonated species. The main product of the fragmentation are Y-type fragment ions and a combination of Y-type fragmentation and the loss of water at the reducing end instead of Z-type fragmentation. C-type fragment ions could not be detected. MS<sup>3</sup> measurements also reveal that each fragment ion only occurs with the participation of a mobile proton and the possibility of glycosidic bond cleavage after fragmentation has already occurred at the reducing end as B<sub>2</sub> fragment ion.</p>\",\"PeriodicalId\":12007,\"journal\":{\"name\":\"European Journal of Mass Spectrometry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Mass Spectrometry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1177/14690667211069033\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/12/24 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, ATOMIC, MOLECULAR & CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Mass Spectrometry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1177/14690667211069033","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/12/24 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"PHYSICS, ATOMIC, MOLECULAR & CHEMICAL","Score":null,"Total":0}
Elucidating the Fragmentation Mechanism of Protonated Lewis A Trisaccharide using MSn CID.
Lewis blood group antigens are a prominent example of isomeric oligosaccharides with biological activity. Understanding the fragmentation mechanism in the gas phase is essential for their identification and assignment by mass spectrometric methods such as ESI-MS. In this work, the [M + H]+ species of Lewis A trisaccharide and Lewis A trisaccharide methyl glycoside were studied by ESI-MS with FT-ICR as mass analyzer with respect to their fragmentation mechanism. The comparison between the underivatized and the methylated species has shown that the reducing end plays a key role in this mechanism. The results of this study question the existence of Z-type fragment ions after activation of the protonated species. The main product of the fragmentation are Y-type fragment ions and a combination of Y-type fragmentation and the loss of water at the reducing end instead of Z-type fragmentation. C-type fragment ions could not be detected. MS3 measurements also reveal that each fragment ion only occurs with the participation of a mobile proton and the possibility of glycosidic bond cleavage after fragmentation has already occurred at the reducing end as B2 fragment ion.
期刊介绍:
JMS - European Journal of Mass Spectrometry, is a peer-reviewed journal, devoted to the publication of innovative research in mass spectrometry. Articles in the journal come from proteomics, metabolomics, petroleomics and other areas developing under the umbrella of the “omic revolution”.