Cristina Di Giorgio, Rosalinda Roselli, Michele Biagioli, Silvia Marchianò, Eleonora Distrutti, Martina Bordoni, Annibale Donini, Stefano Fiorucci
{"title":"类器官作为离体培养系统研究胃癌发生前感染-宿主相互作用。","authors":"Cristina Di Giorgio, Rosalinda Roselli, Michele Biagioli, Silvia Marchianò, Eleonora Distrutti, Martina Bordoni, Annibale Donini, Stefano Fiorucci","doi":"10.2174/2772270816666220105123702","DOIUrl":null,"url":null,"abstract":"<p><p>Advancements in stem cell research have enabled the establishment of three-dimensional (3D) primary cell cultures, known as organoids. These culture systems follow the organization of an in vivo organ, as they enclose the different epithelial cell lines of which it is normally composed. Generation of these 3D cultures has bridged the gap between in vitro models, made up by two-dimensional (2D) cancer cell lines cultures, and in vivo animal models, that have major differences with human diseases. Organoids are increasingly used as a model to study colonization of gastric mucosa by infectious agents and to better understand host-microbe interactions and the molecular events that lead to infection, pathogen-epithelial cells interactions and mechanisms of gastric mucosal injury. In this review we will focus on the role of organoids as a tool to investigate molecular interactions of Helicobacter (H.) pylori and Epstein Barr Virus (EBV) and gastric mucosa and how these infections, that affect ≈ 45% of the world population, might progress to gastric cancer, a highly prevalent cancer and the third leading cause of cancer death.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Organoids as ex vivo culture system to investigate infection-host interaction in gastric pre-carcinogenesis.\",\"authors\":\"Cristina Di Giorgio, Rosalinda Roselli, Michele Biagioli, Silvia Marchianò, Eleonora Distrutti, Martina Bordoni, Annibale Donini, Stefano Fiorucci\",\"doi\":\"10.2174/2772270816666220105123702\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Advancements in stem cell research have enabled the establishment of three-dimensional (3D) primary cell cultures, known as organoids. These culture systems follow the organization of an in vivo organ, as they enclose the different epithelial cell lines of which it is normally composed. Generation of these 3D cultures has bridged the gap between in vitro models, made up by two-dimensional (2D) cancer cell lines cultures, and in vivo animal models, that have major differences with human diseases. Organoids are increasingly used as a model to study colonization of gastric mucosa by infectious agents and to better understand host-microbe interactions and the molecular events that lead to infection, pathogen-epithelial cells interactions and mechanisms of gastric mucosal injury. In this review we will focus on the role of organoids as a tool to investigate molecular interactions of Helicobacter (H.) pylori and Epstein Barr Virus (EBV) and gastric mucosa and how these infections, that affect ≈ 45% of the world population, might progress to gastric cancer, a highly prevalent cancer and the third leading cause of cancer death.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-01-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/2772270816666220105123702\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/2772270816666220105123702","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Organoids as ex vivo culture system to investigate infection-host interaction in gastric pre-carcinogenesis.
Advancements in stem cell research have enabled the establishment of three-dimensional (3D) primary cell cultures, known as organoids. These culture systems follow the organization of an in vivo organ, as they enclose the different epithelial cell lines of which it is normally composed. Generation of these 3D cultures has bridged the gap between in vitro models, made up by two-dimensional (2D) cancer cell lines cultures, and in vivo animal models, that have major differences with human diseases. Organoids are increasingly used as a model to study colonization of gastric mucosa by infectious agents and to better understand host-microbe interactions and the molecular events that lead to infection, pathogen-epithelial cells interactions and mechanisms of gastric mucosal injury. In this review we will focus on the role of organoids as a tool to investigate molecular interactions of Helicobacter (H.) pylori and Epstein Barr Virus (EBV) and gastric mucosa and how these infections, that affect ≈ 45% of the world population, might progress to gastric cancer, a highly prevalent cancer and the third leading cause of cancer death.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.