{"title":"生长激素缺乏症儿童LHX4基因位点的新缺失","authors":"Saumya Madushani Samarasinghe , Tharmini Sundralingam , Asanka Sudeshini Hewage , K.S.H. de Silva , Kamani Hemamala Tennekoon","doi":"10.1016/j.ghir.2021.101443","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><p>To identify and characterize a novel deletion at the <span><em>LHX4</em></span><span> gene locus<span><span> in a proband with </span>growth hormone deficiency (GHD).</span></span></p></div><div><h3>Methods</h3><p>Long range polymerase chain reaction<span> (PCR) amplification was used to confirm the suspected deletion and to identify the rough locations of the end points. Sanger sequencing was carried out to identify the exact end points of the deletion.</span></p></div><div><h3>Results</h3><p><span>Suspected deletion was confirmed via long range PCR amplification. Sanger sequencing identified the end points of the deletion within three nucleotide repeat sequences (“CTT”). The total length of the deleted segment was 12 127 base pairs and it includes complete exon 5 and exon 6 of the </span><em>LHX4</em><span> gene. Therefore the homeodomain motif coded by exons 4 and 5, might be affected</span><del>.</del></p></div><div><h3>Conclusion</h3><p>We have identified a novel deletion that spans exon 5 and exon 6 of the <em>LHX4</em> gene that could have occurred via microhomology mediated non-recurrent rearrangement. The deletion characterized does not appear to have been reported before. To our knowledge this novel deletion is the first identified <em>LHX4</em><span><span> variant from Sri Lanka and it explains the phenotype of the proband characterized by growth hormone deficiency, hypoplastic anterior pituitary and subsequent deficiency of thyroid stimulating hormone and </span>adrenocorticotropic hormone (ACTH).</span></p></div>","PeriodicalId":12803,"journal":{"name":"Growth Hormone & Igf Research","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2022-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Novel gross deletion at the LHX4 gene locus in a child with growth hormone deficiency\",\"authors\":\"Saumya Madushani Samarasinghe , Tharmini Sundralingam , Asanka Sudeshini Hewage , K.S.H. de Silva , Kamani Hemamala Tennekoon\",\"doi\":\"10.1016/j.ghir.2021.101443\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Objective</h3><p>To identify and characterize a novel deletion at the <span><em>LHX4</em></span><span> gene locus<span><span> in a proband with </span>growth hormone deficiency (GHD).</span></span></p></div><div><h3>Methods</h3><p>Long range polymerase chain reaction<span> (PCR) amplification was used to confirm the suspected deletion and to identify the rough locations of the end points. Sanger sequencing was carried out to identify the exact end points of the deletion.</span></p></div><div><h3>Results</h3><p><span>Suspected deletion was confirmed via long range PCR amplification. Sanger sequencing identified the end points of the deletion within three nucleotide repeat sequences (“CTT”). The total length of the deleted segment was 12 127 base pairs and it includes complete exon 5 and exon 6 of the </span><em>LHX4</em><span> gene. Therefore the homeodomain motif coded by exons 4 and 5, might be affected</span><del>.</del></p></div><div><h3>Conclusion</h3><p>We have identified a novel deletion that spans exon 5 and exon 6 of the <em>LHX4</em> gene that could have occurred via microhomology mediated non-recurrent rearrangement. The deletion characterized does not appear to have been reported before. To our knowledge this novel deletion is the first identified <em>LHX4</em><span><span> variant from Sri Lanka and it explains the phenotype of the proband characterized by growth hormone deficiency, hypoplastic anterior pituitary and subsequent deficiency of thyroid stimulating hormone and </span>adrenocorticotropic hormone (ACTH).</span></p></div>\",\"PeriodicalId\":12803,\"journal\":{\"name\":\"Growth Hormone & Igf Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2022-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Growth Hormone & Igf Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1096637421000666\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Growth Hormone & Igf Research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1096637421000666","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Novel gross deletion at the LHX4 gene locus in a child with growth hormone deficiency
Objective
To identify and characterize a novel deletion at the LHX4 gene locus in a proband with growth hormone deficiency (GHD).
Methods
Long range polymerase chain reaction (PCR) amplification was used to confirm the suspected deletion and to identify the rough locations of the end points. Sanger sequencing was carried out to identify the exact end points of the deletion.
Results
Suspected deletion was confirmed via long range PCR amplification. Sanger sequencing identified the end points of the deletion within three nucleotide repeat sequences (“CTT”). The total length of the deleted segment was 12 127 base pairs and it includes complete exon 5 and exon 6 of the LHX4 gene. Therefore the homeodomain motif coded by exons 4 and 5, might be affected.
Conclusion
We have identified a novel deletion that spans exon 5 and exon 6 of the LHX4 gene that could have occurred via microhomology mediated non-recurrent rearrangement. The deletion characterized does not appear to have been reported before. To our knowledge this novel deletion is the first identified LHX4 variant from Sri Lanka and it explains the phenotype of the proband characterized by growth hormone deficiency, hypoplastic anterior pituitary and subsequent deficiency of thyroid stimulating hormone and adrenocorticotropic hormone (ACTH).
期刊介绍:
Growth Hormone & IGF Research is a forum for research on the regulation of growth and metabolism in humans, animals, tissues and cells. It publishes articles on all aspects of growth-promoting and growth-inhibiting hormones and factors, with particular emphasis on insulin-like growth factors (IGFs) and growth hormone. This reflects the increasing importance of growth hormone and IGFs in clinical medicine and in the treatment of diseases.