{"title":"一类SISP呼吸系统疾病的动态分析与最优控制。","authors":"Lei Shi, Longxing Qi","doi":"10.1080/17513758.2022.2027529","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper, the actual background of the susceptible population being directly patients after inhaling a certain amount of PM<math><msub><mi></mi><mrow><mn>2.5</mn></mrow></msub></math> is taken into account. The concentration response function of PM<math><msub><mi></mi><mrow><mn>2.5</mn></mrow></msub></math> is introduced, and the SISP respiratory disease model is proposed. Qualitative theoretical analysis proves that the existence, local stability and global stability of the equilibria are all related to the daily emission <math><msub><mi>P</mi><mrow><mn>0</mn></mrow></msub></math> of PM<math><msub><mi></mi><mrow><mn>2.5</mn></mrow></msub></math> and PM<math><msub><mi></mi><mrow><mn>2.5</mn></mrow></msub></math> pathogenic threshold <i>K</i>. Based on the sensitivity factor analysis and time-varying sensitivity analysis of parameters on the number of patients, it is found that the conversion rate <i>β</i> and the inhalation rate <i>η</i> has the largest positive correlation. The cure rate <i>γ</i> of infected persons has the greatest negative correlation on the number of patients. The control strategy formulated by the analysis results of optimal control theory is as follows: The first step is to improve the clearance rate of PM<math><msub><mi></mi><mrow><mn>2.5</mn></mrow></msub></math> by reducing the PM<math><msub><mi></mi><mrow><mn>2.5</mn></mrow></msub></math> emissions and increasing the intensity of dust removal. Moreover, such removal work must be maintained for a long time. The second step is to improve the cure rate of patients by being treated in time. After that, people should be reminded to wear masks and go out less so as to reduce the conversion rate of susceptible people becoming patients.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Dynamic analysis and optimal control of a class of SISP respiratory diseases.\",\"authors\":\"Lei Shi, Longxing Qi\",\"doi\":\"10.1080/17513758.2022.2027529\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this paper, the actual background of the susceptible population being directly patients after inhaling a certain amount of PM<math><msub><mi></mi><mrow><mn>2.5</mn></mrow></msub></math> is taken into account. The concentration response function of PM<math><msub><mi></mi><mrow><mn>2.5</mn></mrow></msub></math> is introduced, and the SISP respiratory disease model is proposed. Qualitative theoretical analysis proves that the existence, local stability and global stability of the equilibria are all related to the daily emission <math><msub><mi>P</mi><mrow><mn>0</mn></mrow></msub></math> of PM<math><msub><mi></mi><mrow><mn>2.5</mn></mrow></msub></math> and PM<math><msub><mi></mi><mrow><mn>2.5</mn></mrow></msub></math> pathogenic threshold <i>K</i>. Based on the sensitivity factor analysis and time-varying sensitivity analysis of parameters on the number of patients, it is found that the conversion rate <i>β</i> and the inhalation rate <i>η</i> has the largest positive correlation. The cure rate <i>γ</i> of infected persons has the greatest negative correlation on the number of patients. The control strategy formulated by the analysis results of optimal control theory is as follows: The first step is to improve the clearance rate of PM<math><msub><mi></mi><mrow><mn>2.5</mn></mrow></msub></math> by reducing the PM<math><msub><mi></mi><mrow><mn>2.5</mn></mrow></msub></math> emissions and increasing the intensity of dust removal. Moreover, such removal work must be maintained for a long time. The second step is to improve the cure rate of patients by being treated in time. After that, people should be reminded to wear masks and go out less so as to reduce the conversion rate of susceptible people becoming patients.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/17513758.2022.2027529\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/17513758.2022.2027529","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Dynamic analysis and optimal control of a class of SISP respiratory diseases.
In this paper, the actual background of the susceptible population being directly patients after inhaling a certain amount of PM is taken into account. The concentration response function of PM is introduced, and the SISP respiratory disease model is proposed. Qualitative theoretical analysis proves that the existence, local stability and global stability of the equilibria are all related to the daily emission of PM and PM pathogenic threshold K. Based on the sensitivity factor analysis and time-varying sensitivity analysis of parameters on the number of patients, it is found that the conversion rate β and the inhalation rate η has the largest positive correlation. The cure rate γ of infected persons has the greatest negative correlation on the number of patients. The control strategy formulated by the analysis results of optimal control theory is as follows: The first step is to improve the clearance rate of PM by reducing the PM emissions and increasing the intensity of dust removal. Moreover, such removal work must be maintained for a long time. The second step is to improve the cure rate of patients by being treated in time. After that, people should be reminded to wear masks and go out less so as to reduce the conversion rate of susceptible people becoming patients.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.