{"title":"癌细胞中与叶酸功能化DNA纳米笼相关的AS1411诱导细胞毒性的分子机制","authors":"Valeria Unida PhD , Eleonora Mangano PhD , Tania Camboni PhD , Clarissa Consolandi PhD , Alessandro Desideri PhD , Marco Severgnini MSc , Ingrid Cifola PhD , Silvia Biocca PhD","doi":"10.1016/j.nano.2023.102710","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>Self-assembled multivalent DNA </span>nanocages<span><span> are an emerging class of molecules useful for biomedicine<span> applications. Here, we investigated the molecular mechanisms of cytotoxicity induced by AS1411 free aptamer, AS1411-linked nanocages (Apt-NCs) and nanocages harboring both </span></span>folate and AS1411 </span></span>functionalization<span><span> (Fol-Apt-NCs) in HeLa and MDA-MB-231 cancer cell lines. The three </span>treatments<span><span> showed different cytotoxic efficacy and Fol-Apt-NCs resulted the most effective in inhibiting cell proliferation and inducing apoptotic pathways and </span>ROS<span><span> activation in both HeLa and MDA-MB-231 cells. RNA-seq analysis allowed to identify biological functions and genes altered by the various treatments, depending on the AS1411 route of intracellular entry, highlighting the different behavior of the two cancer cell lines. Notably, Fol-Apt-NCs altered the expression of a subset of genes associated to cancer chemoresistance in MDA-MB-231, but not in HeLa cells, and this may explain the increased </span>chemosensitivity<span> to drugs<span> delivered through DNA nanocages of the triple-negative breast cancer cells.</span></span></span></span></span></p></div>","PeriodicalId":396,"journal":{"name":"Nanomedicine: Nanotechnology, Biology and Medicine","volume":"54 ","pages":"Article 102710"},"PeriodicalIF":4.7000,"publicationDate":"2023-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Insights on the molecular mechanisms of cytotoxicity induced by AS1411 linked to folate-functionalized DNA nanocages in cancer cells\",\"authors\":\"Valeria Unida PhD , Eleonora Mangano PhD , Tania Camboni PhD , Clarissa Consolandi PhD , Alessandro Desideri PhD , Marco Severgnini MSc , Ingrid Cifola PhD , Silvia Biocca PhD\",\"doi\":\"10.1016/j.nano.2023.102710\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span>Self-assembled multivalent DNA </span>nanocages<span><span> are an emerging class of molecules useful for biomedicine<span> applications. Here, we investigated the molecular mechanisms of cytotoxicity induced by AS1411 free aptamer, AS1411-linked nanocages (Apt-NCs) and nanocages harboring both </span></span>folate and AS1411 </span></span>functionalization<span><span> (Fol-Apt-NCs) in HeLa and MDA-MB-231 cancer cell lines. The three </span>treatments<span><span> showed different cytotoxic efficacy and Fol-Apt-NCs resulted the most effective in inhibiting cell proliferation and inducing apoptotic pathways and </span>ROS<span><span> activation in both HeLa and MDA-MB-231 cells. RNA-seq analysis allowed to identify biological functions and genes altered by the various treatments, depending on the AS1411 route of intracellular entry, highlighting the different behavior of the two cancer cell lines. Notably, Fol-Apt-NCs altered the expression of a subset of genes associated to cancer chemoresistance in MDA-MB-231, but not in HeLa cells, and this may explain the increased </span>chemosensitivity<span> to drugs<span> delivered through DNA nanocages of the triple-negative breast cancer cells.</span></span></span></span></span></p></div>\",\"PeriodicalId\":396,\"journal\":{\"name\":\"Nanomedicine: Nanotechnology, Biology and Medicine\",\"volume\":\"54 \",\"pages\":\"Article 102710\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2023-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanomedicine: Nanotechnology, Biology and Medicine\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1549963423000618\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomedicine: Nanotechnology, Biology and Medicine","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1549963423000618","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Insights on the molecular mechanisms of cytotoxicity induced by AS1411 linked to folate-functionalized DNA nanocages in cancer cells
Self-assembled multivalent DNA nanocages are an emerging class of molecules useful for biomedicine applications. Here, we investigated the molecular mechanisms of cytotoxicity induced by AS1411 free aptamer, AS1411-linked nanocages (Apt-NCs) and nanocages harboring both folate and AS1411 functionalization (Fol-Apt-NCs) in HeLa and MDA-MB-231 cancer cell lines. The three treatments showed different cytotoxic efficacy and Fol-Apt-NCs resulted the most effective in inhibiting cell proliferation and inducing apoptotic pathways and ROS activation in both HeLa and MDA-MB-231 cells. RNA-seq analysis allowed to identify biological functions and genes altered by the various treatments, depending on the AS1411 route of intracellular entry, highlighting the different behavior of the two cancer cell lines. Notably, Fol-Apt-NCs altered the expression of a subset of genes associated to cancer chemoresistance in MDA-MB-231, but not in HeLa cells, and this may explain the increased chemosensitivity to drugs delivered through DNA nanocages of the triple-negative breast cancer cells.
期刊介绍:
Nanomedicine: Nanotechnology, Biology and Medicine (NBM) is an international, peer-reviewed journal presenting novel, significant, and interdisciplinary theoretical and experimental results related to nanoscience and nanotechnology in the life and health sciences. Content includes basic, translational, and clinical research addressing diagnosis, treatment, monitoring, prediction, and prevention of diseases.