自由生活中的多传感器身体活动识别。

Katherine Ellis, Suneeta Godbole, Jacqueline Kerr, Gert Lanckriet
{"title":"自由生活中的多传感器身体活动识别。","authors":"Katherine Ellis,&nbsp;Suneeta Godbole,&nbsp;Jacqueline Kerr,&nbsp;Gert Lanckriet","doi":"10.1145/2638728.2641673","DOIUrl":null,"url":null,"abstract":"<p><p>Physical activity monitoring in free-living populations has many applications for public health research, weight-loss interventions, context-aware recommendation systems and assistive technologies. We present a system for physical activity recognition that is learned from a free-living dataset of 40 women who wore multiple sensors for seven days. The multi-level classification system first learns low-level codebook representations for each sensor and uses a random forest classifier to produce minute-level probabilities for each activity class. Then a higher-level HMM layer learns patterns of transitions and durations of activities over time to smooth the minute-level predictions. [Formula: see text].</p>","PeriodicalId":90688,"journal":{"name":"Proceedings of the ... ACM International Conference on Ubiquitous Computing . UbiComp (Conference)","volume":" ","pages":"431-440"},"PeriodicalIF":0.0000,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1145/2638728.2641673","citationCount":"43","resultStr":"{\"title\":\"Multi-sensor physical activity recognition in free-living.\",\"authors\":\"Katherine Ellis,&nbsp;Suneeta Godbole,&nbsp;Jacqueline Kerr,&nbsp;Gert Lanckriet\",\"doi\":\"10.1145/2638728.2641673\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Physical activity monitoring in free-living populations has many applications for public health research, weight-loss interventions, context-aware recommendation systems and assistive technologies. We present a system for physical activity recognition that is learned from a free-living dataset of 40 women who wore multiple sensors for seven days. The multi-level classification system first learns low-level codebook representations for each sensor and uses a random forest classifier to produce minute-level probabilities for each activity class. Then a higher-level HMM layer learns patterns of transitions and durations of activities over time to smooth the minute-level predictions. [Formula: see text].</p>\",\"PeriodicalId\":90688,\"journal\":{\"name\":\"Proceedings of the ... ACM International Conference on Ubiquitous Computing . UbiComp (Conference)\",\"volume\":\" \",\"pages\":\"431-440\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1145/2638728.2641673\",\"citationCount\":\"43\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ... ACM International Conference on Ubiquitous Computing . UbiComp (Conference)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2638728.2641673\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... ACM International Conference on Ubiquitous Computing . UbiComp (Conference)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2638728.2641673","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 43

摘要

自由生活人群的身体活动监测在公共卫生研究、减肥干预、情境感知推荐系统和辅助技术方面有许多应用。我们提出了一个身体活动识别系统,该系统是从40名女性的自由生活数据集中学习的,这些女性在7天内佩戴了多个传感器。多级分类系统首先为每个传感器学习低级码本表示,并使用随机森林分类器为每个活动类生成分钟级概率。然后,更高级的HMM层学习过渡模式和活动持续时间,以平滑分钟级的预测。[公式:见正文]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multi-sensor physical activity recognition in free-living.

Physical activity monitoring in free-living populations has many applications for public health research, weight-loss interventions, context-aware recommendation systems and assistive technologies. We present a system for physical activity recognition that is learned from a free-living dataset of 40 women who wore multiple sensors for seven days. The multi-level classification system first learns low-level codebook representations for each sensor and uses a random forest classifier to produce minute-level probabilities for each activity class. Then a higher-level HMM layer learns patterns of transitions and durations of activities over time to smooth the minute-level predictions. [Formula: see text].

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ubiquitous Event Mining to Enhance Personal Health. Lessons from the Deployment of the SPIRIT App to Support Collaborative Care for Rural Patients with Complex Psychiatric Conditions. mHealth Visual Discovery Dashboard. ewrapper: Operationalizing engagement strategies in mHealth. SARA: A Mobile App to Engage Users in Health Data Collection.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1