Anders Galatius , Michelle Strecker Svendsen , Dolores Messer , Mia Valtonen , Michael McGowen , Richard Sabin , Vedrana Andersen Dahl , Anders Bjorholm Dahl , Morten Tange Olsen
{"title":"灰海豹(Halichoerus grypus)颅骨形态的大范围变异","authors":"Anders Galatius , Michelle Strecker Svendsen , Dolores Messer , Mia Valtonen , Michael McGowen , Richard Sabin , Vedrana Andersen Dahl , Anders Bjorholm Dahl , Morten Tange Olsen","doi":"10.1016/j.zool.2022.126023","DOIUrl":null,"url":null,"abstract":"<div><p>The large interspecific variation in marine mammal skull and dental morphology reflects ecological specialisations to foraging and communication. At the intraspecific level, the drivers of skull shape variation are less well understood, having implications for identifying putative local foraging adaptations and delineating populations and subspecies for taxonomy, systematics, management and conservation. Here, we assess the range-wide intraspecific variation in 71 grey seal skulls by 3D surface scanning, collection of cranial landmarks and geometric morphometric analysis. We find that skull shape differs slightly between populations in the Northwest Atlantic, Northeast Atlantic and Baltic Sea. However, there was a large shape overlap between populations and variation was substantially larger among animals within populations than between. We hypothesize that this pattern of intraspecific variation in grey seal skull shape results from balancing selection or phenotypic plasticity allowing for a remarkably generalist foraging behaviour. Moreover, the large overlap in skull shape between populations implies that the separate subspecies status of Atlantic and Baltic Sea grey seals is questionable from a morphological point of view.</p></div>","PeriodicalId":49330,"journal":{"name":"Zoology","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0944200622000241/pdfft?md5=2f158f0c587a8633f5e77b2c169ff9e3&pid=1-s2.0-S0944200622000241-main.pdf","citationCount":"1","resultStr":"{\"title\":\"Range-wide variation in grey seal (Halichoerus grypus) skull morphology\",\"authors\":\"Anders Galatius , Michelle Strecker Svendsen , Dolores Messer , Mia Valtonen , Michael McGowen , Richard Sabin , Vedrana Andersen Dahl , Anders Bjorholm Dahl , Morten Tange Olsen\",\"doi\":\"10.1016/j.zool.2022.126023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The large interspecific variation in marine mammal skull and dental morphology reflects ecological specialisations to foraging and communication. At the intraspecific level, the drivers of skull shape variation are less well understood, having implications for identifying putative local foraging adaptations and delineating populations and subspecies for taxonomy, systematics, management and conservation. Here, we assess the range-wide intraspecific variation in 71 grey seal skulls by 3D surface scanning, collection of cranial landmarks and geometric morphometric analysis. We find that skull shape differs slightly between populations in the Northwest Atlantic, Northeast Atlantic and Baltic Sea. However, there was a large shape overlap between populations and variation was substantially larger among animals within populations than between. We hypothesize that this pattern of intraspecific variation in grey seal skull shape results from balancing selection or phenotypic plasticity allowing for a remarkably generalist foraging behaviour. Moreover, the large overlap in skull shape between populations implies that the separate subspecies status of Atlantic and Baltic Sea grey seals is questionable from a morphological point of view.</p></div>\",\"PeriodicalId\":49330,\"journal\":{\"name\":\"Zoology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2022-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0944200622000241/pdfft?md5=2f158f0c587a8633f5e77b2c169ff9e3&pid=1-s2.0-S0944200622000241-main.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Zoology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0944200622000241\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ZOOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zoology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0944200622000241","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ZOOLOGY","Score":null,"Total":0}
Range-wide variation in grey seal (Halichoerus grypus) skull morphology
The large interspecific variation in marine mammal skull and dental morphology reflects ecological specialisations to foraging and communication. At the intraspecific level, the drivers of skull shape variation are less well understood, having implications for identifying putative local foraging adaptations and delineating populations and subspecies for taxonomy, systematics, management and conservation. Here, we assess the range-wide intraspecific variation in 71 grey seal skulls by 3D surface scanning, collection of cranial landmarks and geometric morphometric analysis. We find that skull shape differs slightly between populations in the Northwest Atlantic, Northeast Atlantic and Baltic Sea. However, there was a large shape overlap between populations and variation was substantially larger among animals within populations than between. We hypothesize that this pattern of intraspecific variation in grey seal skull shape results from balancing selection or phenotypic plasticity allowing for a remarkably generalist foraging behaviour. Moreover, the large overlap in skull shape between populations implies that the separate subspecies status of Atlantic and Baltic Sea grey seals is questionable from a morphological point of view.
期刊介绍:
Zoology is a journal devoted to experimental and comparative animal science. It presents a common forum for all scientists who take an explicitly organism oriented and integrative approach to the study of animal form, function, development and evolution.
The journal invites papers that take a comparative or experimental approach to behavior and neurobiology, functional morphology, evolution and development, ecological physiology, and cell biology. Due to the increasing realization that animals exist only within a partnership with symbionts, Zoology encourages submissions of papers focused on the analysis of holobionts or metaorganisms as associations of the macroscopic host in synergistic interdependence with numerous microbial and eukaryotic species.
The editors and the editorial board are committed to presenting science at its best. The editorial team is regularly adjusting editorial practice to the ever changing field of animal biology.