IF 2.3 4区 计算机科学Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONSR JournalPub Date : 2018-12-01Epub Date: 2018-12-08DOI:10.32614/rj-2018-059
Joshua Lambert, Liyu Gong, Corrine F Elliott, Katherine Thompson, Arnold Stromberg
{"title":"rFSA:一个寻找最佳子集和交互的R包。","authors":"Joshua Lambert, Liyu Gong, Corrine F Elliott, Katherine Thompson, Arnold Stromberg","doi":"10.32614/rj-2018-059","DOIUrl":null,"url":null,"abstract":"<p><p>Herein we present the R package rFSA, which implements an algorithm for improved variable selection. The algorithm searches a data space for models of a user-specified form that are statistically optimal under a measure of model quality. Many iterations afford a set of <i>feasible solutions</i> (or candidate models) that the researcher can evaluate for relevance to his or her questions of interest. The algorithm can be used to formulate new or to improve upon existing models in bioinformatics, health care, and myriad other fields in which the volume of available data has outstripped researchers' practical and computational ability to explore larger subsets or higher-order interaction terms. The package accommodates linear and generalized linear models, as well as a variety of criterion functions such as Allen's PRESS and AIC. New modeling strategies and criterion functions can be adapted easily to work with <b>rFSA</b>.</p>","PeriodicalId":51285,"journal":{"name":"R Journal","volume":"10 2","pages":"295-308"},"PeriodicalIF":2.3000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9205535/pdf/nihms-1811126.pdf","citationCount":"24","resultStr":"{\"title\":\"rFSA: An R Package for Finding Best Subsets and Interactions.\",\"authors\":\"Joshua Lambert, Liyu Gong, Corrine F Elliott, Katherine Thompson, Arnold Stromberg\",\"doi\":\"10.32614/rj-2018-059\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Herein we present the R package rFSA, which implements an algorithm for improved variable selection. The algorithm searches a data space for models of a user-specified form that are statistically optimal under a measure of model quality. Many iterations afford a set of <i>feasible solutions</i> (or candidate models) that the researcher can evaluate for relevance to his or her questions of interest. The algorithm can be used to formulate new or to improve upon existing models in bioinformatics, health care, and myriad other fields in which the volume of available data has outstripped researchers' practical and computational ability to explore larger subsets or higher-order interaction terms. The package accommodates linear and generalized linear models, as well as a variety of criterion functions such as Allen's PRESS and AIC. New modeling strategies and criterion functions can be adapted easily to work with <b>rFSA</b>.</p>\",\"PeriodicalId\":51285,\"journal\":{\"name\":\"R Journal\",\"volume\":\"10 2\",\"pages\":\"295-308\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9205535/pdf/nihms-1811126.pdf\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"R Journal\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.32614/rj-2018-059\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2018/12/8 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"R Journal","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.32614/rj-2018-059","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/12/8 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
rFSA: An R Package for Finding Best Subsets and Interactions.
Herein we present the R package rFSA, which implements an algorithm for improved variable selection. The algorithm searches a data space for models of a user-specified form that are statistically optimal under a measure of model quality. Many iterations afford a set of feasible solutions (or candidate models) that the researcher can evaluate for relevance to his or her questions of interest. The algorithm can be used to formulate new or to improve upon existing models in bioinformatics, health care, and myriad other fields in which the volume of available data has outstripped researchers' practical and computational ability to explore larger subsets or higher-order interaction terms. The package accommodates linear and generalized linear models, as well as a variety of criterion functions such as Allen's PRESS and AIC. New modeling strategies and criterion functions can be adapted easily to work with rFSA.
R JournalCOMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS-STATISTICS & PROBABILITY
CiteScore
2.70
自引率
0.00%
发文量
40
审稿时长
>12 weeks
期刊介绍:
The R Journal is the open access, refereed journal of the R project for statistical computing. It features short to medium length articles covering topics that should be of interest to users or developers of R.
The R Journal intends to reach a wide audience and have a thorough review process. Papers are expected to be reasonably short, clearly written, not too technical, and of course focused on R. Authors of refereed articles should take care to:
- put their contribution in context, in particular discuss related R functions or packages;
- explain the motivation for their contribution;
- provide code examples that are reproducible.