Esther Ulitzsch, Seyma Nur Yildirim-Erbasli, Guher Gorgun, Okan Bulut
{"title":"自我报告测量中粗心和不充分努力反应的解释性混合IRT模型","authors":"Esther Ulitzsch, Seyma Nur Yildirim-Erbasli, Guher Gorgun, Okan Bulut","doi":"10.1111/bmsp.12272","DOIUrl":null,"url":null,"abstract":"<p>Careless and insufficient effort responding (C/IER) on self-report measures results in responses that do not reflect the trait to be measured, thereby posing a major threat to the quality of survey data. Reliable approaches for detecting C/IER aid in increasing the validity of inferences being made from survey data. First, once detected, C/IER can be taken into account in data analysis. Second, approaches for detecting C/IER support a better understanding of its occurrence, which facilitates designing surveys that curb the prevalence of C/IER. Previous approaches for detecting C/IER are limited in that they identify C/IER at the aggregate respondent or scale level, thereby hindering investigations of item characteristics evoking C/IER. We propose an explanatory mixture item response theory model that supports identifying and modelling C/IER at the respondent-by-item level, can detect a wide array of C/IER patterns, and facilitates a deeper understanding of item characteristics associated with its occurrence. As the approach only requires raw response data, it is applicable to data from paper-and-pencil and online surveys. The model shows good parameter recovery and can well handle the simultaneous occurrence of multiple types of C/IER patterns in simulated data. The approach is illustrated on a publicly available Big Five inventory data set, where we found later item positions to be associated with higher C/IER probabilities. We gathered initial supporting validity evidence for the proposed approach by investigating agreement with multiple commonly employed indicators of C/IER.</p>","PeriodicalId":55322,"journal":{"name":"British Journal of Mathematical & Statistical Psychology","volume":"75 3","pages":"668-698"},"PeriodicalIF":1.5000,"publicationDate":"2022-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://bpspsychub.onlinelibrary.wiley.com/doi/epdf/10.1111/bmsp.12272","citationCount":"8","resultStr":"{\"title\":\"An explanatory mixture IRT model for careless and insufficient effort responding in self-report measures\",\"authors\":\"Esther Ulitzsch, Seyma Nur Yildirim-Erbasli, Guher Gorgun, Okan Bulut\",\"doi\":\"10.1111/bmsp.12272\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Careless and insufficient effort responding (C/IER) on self-report measures results in responses that do not reflect the trait to be measured, thereby posing a major threat to the quality of survey data. Reliable approaches for detecting C/IER aid in increasing the validity of inferences being made from survey data. First, once detected, C/IER can be taken into account in data analysis. Second, approaches for detecting C/IER support a better understanding of its occurrence, which facilitates designing surveys that curb the prevalence of C/IER. Previous approaches for detecting C/IER are limited in that they identify C/IER at the aggregate respondent or scale level, thereby hindering investigations of item characteristics evoking C/IER. We propose an explanatory mixture item response theory model that supports identifying and modelling C/IER at the respondent-by-item level, can detect a wide array of C/IER patterns, and facilitates a deeper understanding of item characteristics associated with its occurrence. As the approach only requires raw response data, it is applicable to data from paper-and-pencil and online surveys. The model shows good parameter recovery and can well handle the simultaneous occurrence of multiple types of C/IER patterns in simulated data. The approach is illustrated on a publicly available Big Five inventory data set, where we found later item positions to be associated with higher C/IER probabilities. We gathered initial supporting validity evidence for the proposed approach by investigating agreement with multiple commonly employed indicators of C/IER.</p>\",\"PeriodicalId\":55322,\"journal\":{\"name\":\"British Journal of Mathematical & Statistical Psychology\",\"volume\":\"75 3\",\"pages\":\"668-698\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2022-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://bpspsychub.onlinelibrary.wiley.com/doi/epdf/10.1111/bmsp.12272\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"British Journal of Mathematical & Statistical Psychology\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/bmsp.12272\",\"RegionNum\":3,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"British Journal of Mathematical & Statistical Psychology","FirstCategoryId":"102","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/bmsp.12272","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
An explanatory mixture IRT model for careless and insufficient effort responding in self-report measures
Careless and insufficient effort responding (C/IER) on self-report measures results in responses that do not reflect the trait to be measured, thereby posing a major threat to the quality of survey data. Reliable approaches for detecting C/IER aid in increasing the validity of inferences being made from survey data. First, once detected, C/IER can be taken into account in data analysis. Second, approaches for detecting C/IER support a better understanding of its occurrence, which facilitates designing surveys that curb the prevalence of C/IER. Previous approaches for detecting C/IER are limited in that they identify C/IER at the aggregate respondent or scale level, thereby hindering investigations of item characteristics evoking C/IER. We propose an explanatory mixture item response theory model that supports identifying and modelling C/IER at the respondent-by-item level, can detect a wide array of C/IER patterns, and facilitates a deeper understanding of item characteristics associated with its occurrence. As the approach only requires raw response data, it is applicable to data from paper-and-pencil and online surveys. The model shows good parameter recovery and can well handle the simultaneous occurrence of multiple types of C/IER patterns in simulated data. The approach is illustrated on a publicly available Big Five inventory data set, where we found later item positions to be associated with higher C/IER probabilities. We gathered initial supporting validity evidence for the proposed approach by investigating agreement with multiple commonly employed indicators of C/IER.
期刊介绍:
The British Journal of Mathematical and Statistical Psychology publishes articles relating to areas of psychology which have a greater mathematical or statistical aspect of their argument than is usually acceptable to other journals including:
• mathematical psychology
• statistics
• psychometrics
• decision making
• psychophysics
• classification
• relevant areas of mathematics, computing and computer software
These include articles that address substantitive psychological issues or that develop and extend techniques useful to psychologists. New models for psychological processes, new approaches to existing data, critiques of existing models and improved algorithms for estimating the parameters of a model are examples of articles which may be favoured.