Kerrie B Bouker , Yue Wang , Jianhua Xuan , Robert Clarke
{"title":"抗雌激素抵抗及其系统生物学的应用","authors":"Kerrie B Bouker , Yue Wang , Jianhua Xuan , Robert Clarke","doi":"10.1016/j.ddmec.2012.10.003","DOIUrl":null,"url":null,"abstract":"<div><p>Understanding the molecular changes that drive an acquired antiestrogen<span><span> resistance phenotype is of major clinical relevance. Previous methodologies for addressing this question have taken a single gene/pathway approach and the resulting gains have been limited in terms of their clinical impact. Recent systems biology approaches allow for the integration of data from high throughput ‘-omics’ technologies. We highlight recent advances in the field of antiestrogen resistance with a focus on transcriptomics, </span>proteomics and methylomics.</span></p></div>","PeriodicalId":72843,"journal":{"name":"Drug discovery today. Disease mechanisms","volume":"9 1","pages":"Pages e11-e17"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.ddmec.2012.10.003","citationCount":"3","resultStr":"{\"title\":\"Antiestrogen resistance and the application of systems biology\",\"authors\":\"Kerrie B Bouker , Yue Wang , Jianhua Xuan , Robert Clarke\",\"doi\":\"10.1016/j.ddmec.2012.10.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Understanding the molecular changes that drive an acquired antiestrogen<span><span> resistance phenotype is of major clinical relevance. Previous methodologies for addressing this question have taken a single gene/pathway approach and the resulting gains have been limited in terms of their clinical impact. Recent systems biology approaches allow for the integration of data from high throughput ‘-omics’ technologies. We highlight recent advances in the field of antiestrogen resistance with a focus on transcriptomics, </span>proteomics and methylomics.</span></p></div>\",\"PeriodicalId\":72843,\"journal\":{\"name\":\"Drug discovery today. Disease mechanisms\",\"volume\":\"9 1\",\"pages\":\"Pages e11-e17\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.ddmec.2012.10.003\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drug discovery today. Disease mechanisms\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S174067651200017X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug discovery today. Disease mechanisms","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S174067651200017X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Antiestrogen resistance and the application of systems biology
Understanding the molecular changes that drive an acquired antiestrogen resistance phenotype is of major clinical relevance. Previous methodologies for addressing this question have taken a single gene/pathway approach and the resulting gains have been limited in terms of their clinical impact. Recent systems biology approaches allow for the integration of data from high throughput ‘-omics’ technologies. We highlight recent advances in the field of antiestrogen resistance with a focus on transcriptomics, proteomics and methylomics.