用于研究成年果蝇体内联想嗅觉学习和记忆的技术的进化:历史和技术的观点。

Q4 Neuroscience Invertebrate Neuroscience Pub Date : 2014-03-01 Epub Date: 2013-10-23 DOI:10.1007/s10158-013-0163-z
Nicholas J D Wright
{"title":"用于研究成年果蝇体内联想嗅觉学习和记忆的技术的进化:历史和技术的观点。","authors":"Nicholas J D Wright","doi":"10.1007/s10158-013-0163-z","DOIUrl":null,"url":null,"abstract":"<p><p>Drosophila melanogaster behavioral mutants have been isolated in which the ability to form associative olfactory memories has been disrupted primarily by altering cyclic adenosine monophosphate signal transduction. Unfortunately, the small size of the fruit fly and its neurons has made the application of neurobiological techniques typically used to investigate the physiology underlying these behaviors daunting. However, the realization that adult fruit flies could tolerate a window in the head capsule allowing access to the central structures thought to be involved plus the development of genetically expressed reporters of neuronal function has allowed a meteoric expansion of this field over the last decade. This review attempts to summarize the evolution of the techniques involved from the first use of a window to access these brain areas thought to be involved in associative olfactory learning and memory, the mushroom bodies and antennal lobes, to the current refinements which allow both high-resolution multiphoton imaging and patch clamping of identified neurons while applying the stimuli used in the behavioral protocols. This area of research now appears poised to reveal some very exciting mechanisms underlying behavior. </p>","PeriodicalId":14430,"journal":{"name":"Invertebrate Neuroscience","volume":" ","pages":"1-11"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10158-013-0163-z","citationCount":"8","resultStr":"{\"title\":\"Evolution of the techniques used in studying associative olfactory learning and memory in adult Drosophila in vivo: a historical and technical perspective.\",\"authors\":\"Nicholas J D Wright\",\"doi\":\"10.1007/s10158-013-0163-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Drosophila melanogaster behavioral mutants have been isolated in which the ability to form associative olfactory memories has been disrupted primarily by altering cyclic adenosine monophosphate signal transduction. Unfortunately, the small size of the fruit fly and its neurons has made the application of neurobiological techniques typically used to investigate the physiology underlying these behaviors daunting. However, the realization that adult fruit flies could tolerate a window in the head capsule allowing access to the central structures thought to be involved plus the development of genetically expressed reporters of neuronal function has allowed a meteoric expansion of this field over the last decade. This review attempts to summarize the evolution of the techniques involved from the first use of a window to access these brain areas thought to be involved in associative olfactory learning and memory, the mushroom bodies and antennal lobes, to the current refinements which allow both high-resolution multiphoton imaging and patch clamping of identified neurons while applying the stimuli used in the behavioral protocols. This area of research now appears poised to reveal some very exciting mechanisms underlying behavior. </p>\",\"PeriodicalId\":14430,\"journal\":{\"name\":\"Invertebrate Neuroscience\",\"volume\":\" \",\"pages\":\"1-11\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s10158-013-0163-z\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Invertebrate Neuroscience\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s10158-013-0163-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2013/10/23 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"Neuroscience\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Invertebrate Neuroscience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10158-013-0163-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2013/10/23 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"Neuroscience","Score":null,"Total":0}
引用次数: 8

摘要

已经分离出的黑腹果蝇行为突变体,其形成联想嗅觉记忆的能力主要是通过改变环腺苷单磷酸信号转导而中断的。不幸的是,果蝇及其神经元的体积太小,使得通常用于研究这些行为背后的生理学的神经生物学技术的应用变得令人生畏。然而,人们认识到成年果蝇可以忍受头部囊中的窗口,从而进入被认为与之相关的中心结构,再加上神经元功能基因表达报告者的发展,使得这一领域在过去十年中得到了迅速的发展。这篇综述试图总结相关技术的演变,从第一次使用窗口进入被认为与联想嗅觉学习和记忆有关的大脑区域,蘑菇体和触角叶,到目前的改进,允许高分辨率多光子成像和贴片钳合识别神经元,同时应用行为协议中使用的刺激。这一领域的研究现在似乎准备揭示一些非常令人兴奋的行为机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Evolution of the techniques used in studying associative olfactory learning and memory in adult Drosophila in vivo: a historical and technical perspective.

Drosophila melanogaster behavioral mutants have been isolated in which the ability to form associative olfactory memories has been disrupted primarily by altering cyclic adenosine monophosphate signal transduction. Unfortunately, the small size of the fruit fly and its neurons has made the application of neurobiological techniques typically used to investigate the physiology underlying these behaviors daunting. However, the realization that adult fruit flies could tolerate a window in the head capsule allowing access to the central structures thought to be involved plus the development of genetically expressed reporters of neuronal function has allowed a meteoric expansion of this field over the last decade. This review attempts to summarize the evolution of the techniques involved from the first use of a window to access these brain areas thought to be involved in associative olfactory learning and memory, the mushroom bodies and antennal lobes, to the current refinements which allow both high-resolution multiphoton imaging and patch clamping of identified neurons while applying the stimuli used in the behavioral protocols. This area of research now appears poised to reveal some very exciting mechanisms underlying behavior.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Invertebrate Neuroscience
Invertebrate Neuroscience NEUROSCIENCES-
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Invertebrate Neurosciences publishes peer-reviewed original articles, reviews and technical reports describing recent advances in the field of invertebrate neuroscience. The journal reports on research that exploits the simplicity and experimental tractability of the invertebrate preparations to underpin fundamental advances in neuroscience. Articles published in Invertebrate Neurosciences serve to highlight properties of signalling in the invertebrate nervous system that may be exploited in the field of antiparisitics, molluscicides and insecticides. Aspects of particular interest include: Functional analysis of the invertebrate nervous system; Molecular neuropharmacology and toxicology; Neurogenetics and genomics; Functional anatomy; Neurodevelopment; Neuronal networks; Molecular and cellular mechanisms of behavior and behavioural plasticity.
期刊最新文献
In Vivo Bacteriophages' Application for the Prevention and Therapy of Aquaculture Animals-Chosen Aspects. Cloning of the first cDNA encoding a putative CCRFamide precursor: identification of the brain, eyestalk ganglia, and cardiac ganglion as sites of CCRFamide expression in the American lobster, Homarus americanus. Multi-marker approach for the evaluation of environmental impacts of APACS 50WG on aquatic ecosystems. Pedal serotonergic neuron clusters of the pteropod mollusc, Clione limacina, contain two morphological subtypes with different innervation targets. Pharmacological characterization of the forced swim test in Drosophila melanogaster.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1