政策学习的绩效保障。

Alex Luedtke, Antoine Chambaz
{"title":"政策学习的绩效保障。","authors":"Alex Luedtke, Antoine Chambaz","doi":"10.1214/19-aihp1034","DOIUrl":null,"url":null,"abstract":"<p><p>This article gives performance guarantees for the regret decay in optimal policy estimation. We give a margin-free result showing that the regret decay for estimating a within-class optimal policy is second-order for empirical risk minimizers over Donsker classes when the data are generated from a fixed data distribution that does not change with sample size, with regret decaying at a faster rate than the standard error of an efficient estimator of the value of an optimal policy. We also present a result giving guarantees on the regret decay of policy estimators for the case that the policy falls within a restricted class and the data are generated from local perturbations of a fixed distribution, where this guarantee is uniform in the direction of the local perturbation. Finally, we give a result from the classification literature that shows that faster regret decay is possible via plug-in estimation provided a margin condition holds. Three examples are considered. In these examples, the regret is expressed in terms of either the mean value or the median value, and the number of possible actions is either two or finitely many.</p>","PeriodicalId":93635,"journal":{"name":"Annales de l'I.H.P. Probabilites et statistiques","volume":"56 3","pages":"2162-2188"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8939837/pdf/nihms-1620989.pdf","citationCount":"0","resultStr":"{\"title\":\"Performance Guarantees for Policy Learning.\",\"authors\":\"Alex Luedtke, Antoine Chambaz\",\"doi\":\"10.1214/19-aihp1034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This article gives performance guarantees for the regret decay in optimal policy estimation. We give a margin-free result showing that the regret decay for estimating a within-class optimal policy is second-order for empirical risk minimizers over Donsker classes when the data are generated from a fixed data distribution that does not change with sample size, with regret decaying at a faster rate than the standard error of an efficient estimator of the value of an optimal policy. We also present a result giving guarantees on the regret decay of policy estimators for the case that the policy falls within a restricted class and the data are generated from local perturbations of a fixed distribution, where this guarantee is uniform in the direction of the local perturbation. Finally, we give a result from the classification literature that shows that faster regret decay is possible via plug-in estimation provided a margin condition holds. Three examples are considered. In these examples, the regret is expressed in terms of either the mean value or the median value, and the number of possible actions is either two or finitely many.</p>\",\"PeriodicalId\":93635,\"journal\":{\"name\":\"Annales de l'I.H.P. Probabilites et statistiques\",\"volume\":\"56 3\",\"pages\":\"2162-2188\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8939837/pdf/nihms-1620989.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales de l'I.H.P. Probabilites et statistiques\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1214/19-aihp1034\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2020/6/26 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales de l'I.H.P. Probabilites et statistiques","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/19-aihp1034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/6/26 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文给出了最优策略估计中遗憾衰减的性能保证。我们给出了一个无边际结果,表明当数据由固定的数据分布产生且不随样本大小变化时,对于 Donsker 类上的经验风险最小化器,估计类内最优策略的遗憾衰减是二阶的,遗憾衰减的速度快于最优策略值的有效估计器的标准误差。我们还给出了一个结果,保证了在政策属于受限类别、数据由固定分布的局部扰动产生的情况下,政策估计值的遗憾衰减,这种保证在局部扰动的方向上是均匀的。最后,我们给出了分类文献中的一个结果,该结果表明,只要边际条件成立,就可以通过插件估计实现更快的后悔值衰减。我们考虑了三个例子。在这些例子中,遗憾用均值或中值表示,可能的行动数量为两个或有限多个。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Performance Guarantees for Policy Learning.

This article gives performance guarantees for the regret decay in optimal policy estimation. We give a margin-free result showing that the regret decay for estimating a within-class optimal policy is second-order for empirical risk minimizers over Donsker classes when the data are generated from a fixed data distribution that does not change with sample size, with regret decaying at a faster rate than the standard error of an efficient estimator of the value of an optimal policy. We also present a result giving guarantees on the regret decay of policy estimators for the case that the policy falls within a restricted class and the data are generated from local perturbations of a fixed distribution, where this guarantee is uniform in the direction of the local perturbation. Finally, we give a result from the classification literature that shows that faster regret decay is possible via plug-in estimation provided a margin condition holds. Three examples are considered. In these examples, the regret is expressed in terms of either the mean value or the median value, and the number of possible actions is either two or finitely many.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Performance Guarantees for Policy Learning.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1