Jeremy B. Yoder, Albert Dang, Caitlin MacGregor, Mikhail Plaza
{"title":"植物间的相互作用和跨营养水平的多样化","authors":"Jeremy B. Yoder, Albert Dang, Caitlin MacGregor, Mikhail Plaza","doi":"10.1002/evl3.296","DOIUrl":null,"url":null,"abstract":"<p>Interactions between species are widely understood to have promoted the diversification of life on Earth, but how interactions spur the formation of new species remains unclear. Interacting species often become locally adapted to each other, but they may also be subject to shared dispersal limitations and environmental conditions. Moreover, theory predicts that different kinds of interactions have different effects on diversification. To better understand how species interactions promote diversification, we compiled population genetic studies of host plants and intimately associated herbivores, parasites, and mutualists. We used Bayesian multiple regressions and the BEDASSLE modeling framework to test whether host and associate population structures were correlated over and above the potentially confounding effects of geography and shared environmental variation. We found that associates' population structure often paralleled their hosts' population structure, and that this effect is robust to accounting for geographic distance and climate. Associate genetic structure was significantly explained by plant genetic structure somewhat more often in antagonistic interactions than in mutualistic ones. This aligns with a key prediction of coevolutionary theory that antagonistic interactions promote diversity through local adaptation of antagonists to hosts, while mutualistic interactions more often promote diversity via the effect of hosts' geographic distribution on mutualists' dispersal.</p>","PeriodicalId":48629,"journal":{"name":"Evolution Letters","volume":"6 5","pages":"375-389"},"PeriodicalIF":3.4000,"publicationDate":"2022-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9554764/pdf/","citationCount":"0","resultStr":"{\"title\":\"Plant-associate interactions and diversification across trophic levels\",\"authors\":\"Jeremy B. Yoder, Albert Dang, Caitlin MacGregor, Mikhail Plaza\",\"doi\":\"10.1002/evl3.296\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Interactions between species are widely understood to have promoted the diversification of life on Earth, but how interactions spur the formation of new species remains unclear. Interacting species often become locally adapted to each other, but they may also be subject to shared dispersal limitations and environmental conditions. Moreover, theory predicts that different kinds of interactions have different effects on diversification. To better understand how species interactions promote diversification, we compiled population genetic studies of host plants and intimately associated herbivores, parasites, and mutualists. We used Bayesian multiple regressions and the BEDASSLE modeling framework to test whether host and associate population structures were correlated over and above the potentially confounding effects of geography and shared environmental variation. We found that associates' population structure often paralleled their hosts' population structure, and that this effect is robust to accounting for geographic distance and climate. Associate genetic structure was significantly explained by plant genetic structure somewhat more often in antagonistic interactions than in mutualistic ones. This aligns with a key prediction of coevolutionary theory that antagonistic interactions promote diversity through local adaptation of antagonists to hosts, while mutualistic interactions more often promote diversity via the effect of hosts' geographic distribution on mutualists' dispersal.</p>\",\"PeriodicalId\":48629,\"journal\":{\"name\":\"Evolution Letters\",\"volume\":\"6 5\",\"pages\":\"375-389\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2022-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9554764/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Evolution Letters\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/evl3.296\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"EVOLUTIONARY BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolution Letters","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/evl3.296","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"EVOLUTIONARY BIOLOGY","Score":null,"Total":0}
Plant-associate interactions and diversification across trophic levels
Interactions between species are widely understood to have promoted the diversification of life on Earth, but how interactions spur the formation of new species remains unclear. Interacting species often become locally adapted to each other, but they may also be subject to shared dispersal limitations and environmental conditions. Moreover, theory predicts that different kinds of interactions have different effects on diversification. To better understand how species interactions promote diversification, we compiled population genetic studies of host plants and intimately associated herbivores, parasites, and mutualists. We used Bayesian multiple regressions and the BEDASSLE modeling framework to test whether host and associate population structures were correlated over and above the potentially confounding effects of geography and shared environmental variation. We found that associates' population structure often paralleled their hosts' population structure, and that this effect is robust to accounting for geographic distance and climate. Associate genetic structure was significantly explained by plant genetic structure somewhat more often in antagonistic interactions than in mutualistic ones. This aligns with a key prediction of coevolutionary theory that antagonistic interactions promote diversity through local adaptation of antagonists to hosts, while mutualistic interactions more often promote diversity via the effect of hosts' geographic distribution on mutualists' dispersal.
期刊介绍:
Evolution Letters publishes cutting-edge new research in all areas of Evolutionary Biology.
Available exclusively online, and entirely open access, Evolution Letters consists of Letters - original pieces of research which form the bulk of papers - and Comments and Opinion - a forum for highlighting timely new research ideas for the evolutionary community.