{"title":"毕竟,响亮的听觉干扰更难以忽视。","authors":"Lejla Alikadic, Jan Philipp Röer","doi":"10.1027/1618-3169/a000554","DOIUrl":null,"url":null,"abstract":"<p><p><b></b> Working memory performance is markedly disrupted when task-irrelevant sound is played during item presentation or retention. In a preregistered replication study, we systematically examined the role of intensity in two types of auditory distraction. The first type of distraction is the changing-state effect (i.e., increased disruption by changing-state relative to steady-state sequences). The second type is the auditory deviant effect (i.e., increased disruption by auditory deviant relative to steady-state sequences). In previous experiments, the changing-state effect was independent of intensity. Whether a deviation in intensity leads to an increase in disruption has not yet been examined. We replicated the classic finding that the increased disruption by changing-state relative to steady-state sequences is independent of intensity. Contrary to previous studies, we found an unexpected main effect of intensity. Steady-state and changing-state sequences presented at 75 dB(A) were more disruptive than presented at 45 dB(A), suggesting that intensity plays a more important role than previously assumed in the disruption of working memory performance. Furthermore, we tested the prediction of the violation of expectancy account, according to which deviant distractors at a lower and higher intensity than the rest of the sequence should be equally disruptive. Our results were consistent with this prediction.</p>","PeriodicalId":12173,"journal":{"name":"Experimental psychology","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9609681/pdf/","citationCount":"1","resultStr":"{\"title\":\"Loud Auditory Distractors Are More Difficult to Ignore After All.\",\"authors\":\"Lejla Alikadic, Jan Philipp Röer\",\"doi\":\"10.1027/1618-3169/a000554\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b></b> Working memory performance is markedly disrupted when task-irrelevant sound is played during item presentation or retention. In a preregistered replication study, we systematically examined the role of intensity in two types of auditory distraction. The first type of distraction is the changing-state effect (i.e., increased disruption by changing-state relative to steady-state sequences). The second type is the auditory deviant effect (i.e., increased disruption by auditory deviant relative to steady-state sequences). In previous experiments, the changing-state effect was independent of intensity. Whether a deviation in intensity leads to an increase in disruption has not yet been examined. We replicated the classic finding that the increased disruption by changing-state relative to steady-state sequences is independent of intensity. Contrary to previous studies, we found an unexpected main effect of intensity. Steady-state and changing-state sequences presented at 75 dB(A) were more disruptive than presented at 45 dB(A), suggesting that intensity plays a more important role than previously assumed in the disruption of working memory performance. Furthermore, we tested the prediction of the violation of expectancy account, according to which deviant distractors at a lower and higher intensity than the rest of the sequence should be equally disruptive. Our results were consistent with this prediction.</p>\",\"PeriodicalId\":12173,\"journal\":{\"name\":\"Experimental psychology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2022-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9609681/pdf/\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental psychology\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1027/1618-3169/a000554\",\"RegionNum\":4,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PSYCHOLOGY, EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental psychology","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1027/1618-3169/a000554","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PSYCHOLOGY, EXPERIMENTAL","Score":null,"Total":0}
Loud Auditory Distractors Are More Difficult to Ignore After All.
Working memory performance is markedly disrupted when task-irrelevant sound is played during item presentation or retention. In a preregistered replication study, we systematically examined the role of intensity in two types of auditory distraction. The first type of distraction is the changing-state effect (i.e., increased disruption by changing-state relative to steady-state sequences). The second type is the auditory deviant effect (i.e., increased disruption by auditory deviant relative to steady-state sequences). In previous experiments, the changing-state effect was independent of intensity. Whether a deviation in intensity leads to an increase in disruption has not yet been examined. We replicated the classic finding that the increased disruption by changing-state relative to steady-state sequences is independent of intensity. Contrary to previous studies, we found an unexpected main effect of intensity. Steady-state and changing-state sequences presented at 75 dB(A) were more disruptive than presented at 45 dB(A), suggesting that intensity plays a more important role than previously assumed in the disruption of working memory performance. Furthermore, we tested the prediction of the violation of expectancy account, according to which deviant distractors at a lower and higher intensity than the rest of the sequence should be equally disruptive. Our results were consistent with this prediction.
期刊介绍:
As its name implies, Experimental Psychology (ISSN 1618-3169) publishes innovative, original, high-quality experimental research in psychology — quickly! It aims to provide a particularly fast outlet for such research, relying heavily on electronic exchange of information which begins with the electronic submission of manuscripts, and continues throughout the entire review and production process. The scope of the journal is defined by the experimental method, and so papers based on experiments from all areas of psychology are published. In addition to research articles, Experimental Psychology includes occasional theoretical and review articles.