{"title":"科西嘉岛Helleborus lividus subsp: Corsicus叶片二氯甲烷提取物中5-羟甲基-2(5H)-呋喃酮含量的1H NMR方法","authors":"Thomas Maroselli, Mathieu Paoli, Ange Bighelli","doi":"10.1155/2022/9580338","DOIUrl":null,"url":null,"abstract":"<p><p>An experimental procedure using <sup>1</sup>H NMR was developed and validated to quantify 5-hydroxymethyl-2(5H)-furanone, a valuable chemical synthon ((S)-enantiomer), in a dichloromethane extract of <i>Helleborus lividus</i> subsp. <i>corsicus</i> leaves. This method, using vanillin as the internal standard, exhibited a perfect linearity of measurements (<i>R</i> <sup>2</sup> = 1) associated with very good accuracy (relative errors comprised between -1.62% and 4.25%) and precision (reproducibility 30.51 mg ± 0.4%). The limit of detection and the limit of quantitation have been measured at 0.14 mg and 0.59 mg, respectively. The experiment time is very short since a single analysis is at the minute level. 5-Hydroxymethyl-2(5H)-furanone accounted for nearly 85% in the dichloromethane extract of <i>H. lividus</i> subsp. <i>corsicus</i> leaves (1.7% of the mass of fresh leaves). This plant represents an important and natural source of (S)-5-hydroxymethyl-2(5H)-furanone (main enantiomer; determined using a GC chiral analysis).</p>","PeriodicalId":14974,"journal":{"name":"Journal of Analytical Methods in Chemistry","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2022-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9433289/pdf/","citationCount":"1","resultStr":"{\"title\":\"A Validated <sup>1</sup>H NMR Method for the Quantitation of 5-Hydroxymethyl-2(5H)-Furanone, a Valuable Chemical Intermediate, In a Dichloromethane Extract of <i>Helleborus lividus</i> subsp: C<i>orsicus</i> Leaves from Corsica.\",\"authors\":\"Thomas Maroselli, Mathieu Paoli, Ange Bighelli\",\"doi\":\"10.1155/2022/9580338\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>An experimental procedure using <sup>1</sup>H NMR was developed and validated to quantify 5-hydroxymethyl-2(5H)-furanone, a valuable chemical synthon ((S)-enantiomer), in a dichloromethane extract of <i>Helleborus lividus</i> subsp. <i>corsicus</i> leaves. This method, using vanillin as the internal standard, exhibited a perfect linearity of measurements (<i>R</i> <sup>2</sup> = 1) associated with very good accuracy (relative errors comprised between -1.62% and 4.25%) and precision (reproducibility 30.51 mg ± 0.4%). The limit of detection and the limit of quantitation have been measured at 0.14 mg and 0.59 mg, respectively. The experiment time is very short since a single analysis is at the minute level. 5-Hydroxymethyl-2(5H)-furanone accounted for nearly 85% in the dichloromethane extract of <i>H. lividus</i> subsp. <i>corsicus</i> leaves (1.7% of the mass of fresh leaves). This plant represents an important and natural source of (S)-5-hydroxymethyl-2(5H)-furanone (main enantiomer; determined using a GC chiral analysis).</p>\",\"PeriodicalId\":14974,\"journal\":{\"name\":\"Journal of Analytical Methods in Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2022-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9433289/pdf/\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Analytical Methods in Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1155/2022/9580338\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Analytical Methods in Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1155/2022/9580338","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
A Validated 1H NMR Method for the Quantitation of 5-Hydroxymethyl-2(5H)-Furanone, a Valuable Chemical Intermediate, In a Dichloromethane Extract of Helleborus lividus subsp: Corsicus Leaves from Corsica.
An experimental procedure using 1H NMR was developed and validated to quantify 5-hydroxymethyl-2(5H)-furanone, a valuable chemical synthon ((S)-enantiomer), in a dichloromethane extract of Helleborus lividus subsp. corsicus leaves. This method, using vanillin as the internal standard, exhibited a perfect linearity of measurements (R2 = 1) associated with very good accuracy (relative errors comprised between -1.62% and 4.25%) and precision (reproducibility 30.51 mg ± 0.4%). The limit of detection and the limit of quantitation have been measured at 0.14 mg and 0.59 mg, respectively. The experiment time is very short since a single analysis is at the minute level. 5-Hydroxymethyl-2(5H)-furanone accounted for nearly 85% in the dichloromethane extract of H. lividus subsp. corsicus leaves (1.7% of the mass of fresh leaves). This plant represents an important and natural source of (S)-5-hydroxymethyl-2(5H)-furanone (main enantiomer; determined using a GC chiral analysis).
期刊介绍:
Journal of Analytical Methods in Chemistry publishes papers reporting methods and instrumentation for chemical analysis, and their application to real-world problems. Articles may be either practical or theoretical.
Subject areas include (but are by no means limited to):
Separation
Spectroscopy
Mass spectrometry
Chromatography
Analytical Sample Preparation
Electrochemical analysis
Hyphenated techniques
Data processing
As well as original research, Journal of Analytical Methods in Chemistry also publishes focused review articles that examine the state of the art, identify emerging trends, and suggest future directions for developing fields.