Lauren K. Wareham , John Kuchtey , Hang-Jing Wu , Evan Krystofiak , Yusheng Wu , Cynthia A. Reinhart-King , Rachel W. Kuchtey
{"title":"赖氨酸氧化酶样1缺乏改变小鼠乳头周围巩膜的超微结构和生物力学特性","authors":"Lauren K. Wareham , John Kuchtey , Hang-Jing Wu , Evan Krystofiak , Yusheng Wu , Cynthia A. Reinhart-King , Rachel W. Kuchtey","doi":"10.1016/j.mbplus.2022.100120","DOIUrl":null,"url":null,"abstract":"<div><p>Lysyl oxidase-like 1 encoded by the <em>LOXL1</em> gene is a member of the lysyl oxidase family of enzymes that are important in the maintenance of extracellular matrix (ECM)-rich tissue. LOXL1 is important for proper elastic fiber formation and mice lacking LOXL1 (<em>Loxl1<sup>−/−</sup></em>) exhibit systemic elastic fiber disorders, such as pelvic organ prolapse, a phenotype associated with exfoliation syndrome (XFS) in humans. Patients with XFS have a significant risk of developing exfoliation glaucoma (XFG), a severe form of glaucoma, which is a neurodegenerative condition leading to irreversible blindness if not detected and treated in a timely fashion. Although <em>Loxl1<sup>−/−</sup></em> mice have been used extensively to investigate mechanisms of pelvic organ prolapse, studies of eyes in those mice are limited and some showed inconsistent ocular phenotypes. In this study we demonstrate that <em>Loxl1<sup>−/−</sup></em> mice have significant anterior segment biometric abnormalities which recapitulate some human XFS features. We then focused on the peripapillary sclera (PPS), a critical structure for maintaining optic nerve health. We discovered quantitative and qualitive changes in ultrastructure of PPS, such as reduced elastic fibers, enlarged collagen fibrils, and transformed collagen lamella organization detected by transmission electron microscopy (TEM). Importantly, these changes corelate with altered tissue biomechanics detected by Atomic Force Microscopy (AFM) of PPS in mice. Together, our results support a crucial role for LOXL1 in ocular tissue structure and biomechanics, and <em>Loxl1<sup>−/−</sup></em> mice could be a valuable resource for understanding the role of scleral tissue biomechanics in ocular disease.</p></div>","PeriodicalId":52317,"journal":{"name":"Matrix Biology Plus","volume":"16 ","pages":"Article 100120"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/dc/14/main.PMC9436796.pdf","citationCount":"1","resultStr":"{\"title\":\"Lysyl oxidase-like 1 deficiency alters ultrastructural and biomechanical properties of the peripapillary sclera in mice\",\"authors\":\"Lauren K. Wareham , John Kuchtey , Hang-Jing Wu , Evan Krystofiak , Yusheng Wu , Cynthia A. Reinhart-King , Rachel W. Kuchtey\",\"doi\":\"10.1016/j.mbplus.2022.100120\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Lysyl oxidase-like 1 encoded by the <em>LOXL1</em> gene is a member of the lysyl oxidase family of enzymes that are important in the maintenance of extracellular matrix (ECM)-rich tissue. LOXL1 is important for proper elastic fiber formation and mice lacking LOXL1 (<em>Loxl1<sup>−/−</sup></em>) exhibit systemic elastic fiber disorders, such as pelvic organ prolapse, a phenotype associated with exfoliation syndrome (XFS) in humans. Patients with XFS have a significant risk of developing exfoliation glaucoma (XFG), a severe form of glaucoma, which is a neurodegenerative condition leading to irreversible blindness if not detected and treated in a timely fashion. Although <em>Loxl1<sup>−/−</sup></em> mice have been used extensively to investigate mechanisms of pelvic organ prolapse, studies of eyes in those mice are limited and some showed inconsistent ocular phenotypes. In this study we demonstrate that <em>Loxl1<sup>−/−</sup></em> mice have significant anterior segment biometric abnormalities which recapitulate some human XFS features. We then focused on the peripapillary sclera (PPS), a critical structure for maintaining optic nerve health. We discovered quantitative and qualitive changes in ultrastructure of PPS, such as reduced elastic fibers, enlarged collagen fibrils, and transformed collagen lamella organization detected by transmission electron microscopy (TEM). Importantly, these changes corelate with altered tissue biomechanics detected by Atomic Force Microscopy (AFM) of PPS in mice. Together, our results support a crucial role for LOXL1 in ocular tissue structure and biomechanics, and <em>Loxl1<sup>−/−</sup></em> mice could be a valuable resource for understanding the role of scleral tissue biomechanics in ocular disease.</p></div>\",\"PeriodicalId\":52317,\"journal\":{\"name\":\"Matrix Biology Plus\",\"volume\":\"16 \",\"pages\":\"Article 100120\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/dc/14/main.PMC9436796.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Matrix Biology Plus\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590028522000205\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matrix Biology Plus","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590028522000205","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
Lysyl oxidase-like 1 deficiency alters ultrastructural and biomechanical properties of the peripapillary sclera in mice
Lysyl oxidase-like 1 encoded by the LOXL1 gene is a member of the lysyl oxidase family of enzymes that are important in the maintenance of extracellular matrix (ECM)-rich tissue. LOXL1 is important for proper elastic fiber formation and mice lacking LOXL1 (Loxl1−/−) exhibit systemic elastic fiber disorders, such as pelvic organ prolapse, a phenotype associated with exfoliation syndrome (XFS) in humans. Patients with XFS have a significant risk of developing exfoliation glaucoma (XFG), a severe form of glaucoma, which is a neurodegenerative condition leading to irreversible blindness if not detected and treated in a timely fashion. Although Loxl1−/− mice have been used extensively to investigate mechanisms of pelvic organ prolapse, studies of eyes in those mice are limited and some showed inconsistent ocular phenotypes. In this study we demonstrate that Loxl1−/− mice have significant anterior segment biometric abnormalities which recapitulate some human XFS features. We then focused on the peripapillary sclera (PPS), a critical structure for maintaining optic nerve health. We discovered quantitative and qualitive changes in ultrastructure of PPS, such as reduced elastic fibers, enlarged collagen fibrils, and transformed collagen lamella organization detected by transmission electron microscopy (TEM). Importantly, these changes corelate with altered tissue biomechanics detected by Atomic Force Microscopy (AFM) of PPS in mice. Together, our results support a crucial role for LOXL1 in ocular tissue structure and biomechanics, and Loxl1−/− mice could be a valuable resource for understanding the role of scleral tissue biomechanics in ocular disease.