赖氨酸氧化酶样1缺乏改变小鼠乳头周围巩膜的超微结构和生物力学特性

Q1 Medicine Matrix Biology Plus Pub Date : 2022-12-01 DOI:10.1016/j.mbplus.2022.100120
Lauren K. Wareham , John Kuchtey , Hang-Jing Wu , Evan Krystofiak , Yusheng Wu , Cynthia A. Reinhart-King , Rachel W. Kuchtey
{"title":"赖氨酸氧化酶样1缺乏改变小鼠乳头周围巩膜的超微结构和生物力学特性","authors":"Lauren K. Wareham ,&nbsp;John Kuchtey ,&nbsp;Hang-Jing Wu ,&nbsp;Evan Krystofiak ,&nbsp;Yusheng Wu ,&nbsp;Cynthia A. Reinhart-King ,&nbsp;Rachel W. Kuchtey","doi":"10.1016/j.mbplus.2022.100120","DOIUrl":null,"url":null,"abstract":"<div><p>Lysyl oxidase-like 1 encoded by the <em>LOXL1</em> gene is a member of the lysyl oxidase family of enzymes that are important in the maintenance of extracellular matrix (ECM)-rich tissue. LOXL1 is important for proper elastic fiber formation and mice lacking LOXL1 (<em>Loxl1<sup>−/−</sup></em>) exhibit systemic elastic fiber disorders, such as pelvic organ prolapse, a phenotype associated with exfoliation syndrome (XFS) in humans. Patients with XFS have a significant risk of developing exfoliation glaucoma (XFG), a severe form of glaucoma, which is a neurodegenerative condition leading to irreversible blindness if not detected and treated in a timely fashion. Although <em>Loxl1<sup>−/−</sup></em> mice have been used extensively to investigate mechanisms of pelvic organ prolapse, studies of eyes in those mice are limited and some showed inconsistent ocular phenotypes. In this study we demonstrate that <em>Loxl1<sup>−/−</sup></em> mice have significant anterior segment biometric abnormalities which recapitulate some human XFS features. We then focused on the peripapillary sclera (PPS), a critical structure for maintaining optic nerve health. We discovered quantitative and qualitive changes in ultrastructure of PPS, such as reduced elastic fibers, enlarged collagen fibrils, and transformed collagen lamella organization detected by transmission electron microscopy (TEM). Importantly, these changes corelate with altered tissue biomechanics detected by Atomic Force Microscopy (AFM) of PPS in mice. Together, our results support a crucial role for LOXL1 in ocular tissue structure and biomechanics, and <em>Loxl1<sup>−/−</sup></em> mice could be a valuable resource for understanding the role of scleral tissue biomechanics in ocular disease.</p></div>","PeriodicalId":52317,"journal":{"name":"Matrix Biology Plus","volume":"16 ","pages":"Article 100120"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/dc/14/main.PMC9436796.pdf","citationCount":"1","resultStr":"{\"title\":\"Lysyl oxidase-like 1 deficiency alters ultrastructural and biomechanical properties of the peripapillary sclera in mice\",\"authors\":\"Lauren K. Wareham ,&nbsp;John Kuchtey ,&nbsp;Hang-Jing Wu ,&nbsp;Evan Krystofiak ,&nbsp;Yusheng Wu ,&nbsp;Cynthia A. Reinhart-King ,&nbsp;Rachel W. Kuchtey\",\"doi\":\"10.1016/j.mbplus.2022.100120\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Lysyl oxidase-like 1 encoded by the <em>LOXL1</em> gene is a member of the lysyl oxidase family of enzymes that are important in the maintenance of extracellular matrix (ECM)-rich tissue. LOXL1 is important for proper elastic fiber formation and mice lacking LOXL1 (<em>Loxl1<sup>−/−</sup></em>) exhibit systemic elastic fiber disorders, such as pelvic organ prolapse, a phenotype associated with exfoliation syndrome (XFS) in humans. Patients with XFS have a significant risk of developing exfoliation glaucoma (XFG), a severe form of glaucoma, which is a neurodegenerative condition leading to irreversible blindness if not detected and treated in a timely fashion. Although <em>Loxl1<sup>−/−</sup></em> mice have been used extensively to investigate mechanisms of pelvic organ prolapse, studies of eyes in those mice are limited and some showed inconsistent ocular phenotypes. In this study we demonstrate that <em>Loxl1<sup>−/−</sup></em> mice have significant anterior segment biometric abnormalities which recapitulate some human XFS features. We then focused on the peripapillary sclera (PPS), a critical structure for maintaining optic nerve health. We discovered quantitative and qualitive changes in ultrastructure of PPS, such as reduced elastic fibers, enlarged collagen fibrils, and transformed collagen lamella organization detected by transmission electron microscopy (TEM). Importantly, these changes corelate with altered tissue biomechanics detected by Atomic Force Microscopy (AFM) of PPS in mice. Together, our results support a crucial role for LOXL1 in ocular tissue structure and biomechanics, and <em>Loxl1<sup>−/−</sup></em> mice could be a valuable resource for understanding the role of scleral tissue biomechanics in ocular disease.</p></div>\",\"PeriodicalId\":52317,\"journal\":{\"name\":\"Matrix Biology Plus\",\"volume\":\"16 \",\"pages\":\"Article 100120\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/dc/14/main.PMC9436796.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Matrix Biology Plus\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590028522000205\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matrix Biology Plus","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590028522000205","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 1

摘要

赖氨酸氧化酶样1由LOXL1基因编码,是赖氨酸氧化酶家族的一员,在维持细胞外基质(ECM)丰富的组织中起重要作用。LOXL1对于弹性纤维的形成很重要,缺乏LOXL1 (LOXL1−/−)的小鼠表现出系统性弹性纤维紊乱,如盆腔器官脱垂,这是一种与人类脱落综合征(XFS)相关的表型。XFS患者有很大的风险发展为脱落性青光眼(XFG),这是一种严重的青光眼,如果不及时发现和治疗,这是一种神经退行性疾病,会导致不可逆的失明。尽管Loxl1 - / -小鼠已被广泛用于研究盆腔器官脱垂的机制,但对这些小鼠眼睛的研究有限,有些小鼠的眼睛表型不一致。在这项研究中,我们证明了Loxl1 - / -小鼠具有显著的前段生物特征异常,这些异常重现了一些人类XFS特征。然后我们将重点放在维持视神经健康的关键结构乳头周围巩膜(PPS)上。透射电镜(TEM)观察到PPS的超微结构发生了定量和定性变化,弹性纤维减少,胶原原纤维增大,胶原片层组织改变。重要的是,这些变化与小鼠PPS原子力显微镜(AFM)检测到的组织生物力学改变有关。总之,我们的研究结果支持LOXL1在眼组织结构和生物力学中的关键作用,并且LOXL1 - / -小鼠可以成为了解巩膜组织生物力学在眼部疾病中的作用的宝贵资源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Lysyl oxidase-like 1 deficiency alters ultrastructural and biomechanical properties of the peripapillary sclera in mice

Lysyl oxidase-like 1 encoded by the LOXL1 gene is a member of the lysyl oxidase family of enzymes that are important in the maintenance of extracellular matrix (ECM)-rich tissue. LOXL1 is important for proper elastic fiber formation and mice lacking LOXL1 (Loxl1−/−) exhibit systemic elastic fiber disorders, such as pelvic organ prolapse, a phenotype associated with exfoliation syndrome (XFS) in humans. Patients with XFS have a significant risk of developing exfoliation glaucoma (XFG), a severe form of glaucoma, which is a neurodegenerative condition leading to irreversible blindness if not detected and treated in a timely fashion. Although Loxl1−/− mice have been used extensively to investigate mechanisms of pelvic organ prolapse, studies of eyes in those mice are limited and some showed inconsistent ocular phenotypes. In this study we demonstrate that Loxl1−/− mice have significant anterior segment biometric abnormalities which recapitulate some human XFS features. We then focused on the peripapillary sclera (PPS), a critical structure for maintaining optic nerve health. We discovered quantitative and qualitive changes in ultrastructure of PPS, such as reduced elastic fibers, enlarged collagen fibrils, and transformed collagen lamella organization detected by transmission electron microscopy (TEM). Importantly, these changes corelate with altered tissue biomechanics detected by Atomic Force Microscopy (AFM) of PPS in mice. Together, our results support a crucial role for LOXL1 in ocular tissue structure and biomechanics, and Loxl1−/− mice could be a valuable resource for understanding the role of scleral tissue biomechanics in ocular disease.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Matrix Biology Plus
Matrix Biology Plus Medicine-Histology
CiteScore
9.00
自引率
0.00%
发文量
25
审稿时长
105 days
期刊最新文献
A human stem cell-derived model reveals pathologic extracellular matrix remodeling in diabetic podocyte injury Bone quality relies on hyaluronan synthesis – Insights from mice with complete knockout of hyaluronan synthase expression Profiling of collagen and extracellular matrix deposition from cell culture using in vitro ExtraCellular matrix mass spectrometry imaging (ivECM-MSI) Obesity-driven changes in breast tissue exhibit a pro-angiogenic extracellular matrix signature The importance of matrix in cardiomyogenesis: Defined substrates for maturation and chamber specificity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1