{"title":"高粱-苏丹草杂种低氢氰酸主要QTL qPA7-1的精细定位。","authors":"Guofang Wu, Xiaoxia Yu, Zhuo Yu, Qianqian Lu, Dongsheng Yang, Yue Shi, Jiaqi Li, Jingwei Li","doi":"10.1139/gen-2021-0114","DOIUrl":null,"url":null,"abstract":"<p><p>The purpose of this study was to study the genetic mechanism of low hydrocyanic acid (HCN) content. The segregation of HCN content trait in fresh stems and leaves was determined in the sorghum (<i>Sorghum bicolor</i> (L.) Moench)-sudangrass (<i>Sorghum sudanense</i> (Piper) Stapf) hybrid F<sub>2</sub> population (<i>N</i> = 1200), also used to detect a quantitative trait locus (QTL) for HCN content. Our hypothesis was that the additive effect of QTL was negative, showing that QTL was associated with low HCN. In the present research, a total of 11 simple sequence repeats (SSR) polymorphic primers were screened, and four SSR markers associated with low HCN content were developed based on the bulked segregant analysis method. A high-resolution genetic linkage group of the previously known <i>qPA7-1</i> locus of the low HCN trait was constructed by analyzing different populations, families, and recombinants. Then, the QTL <i>qPA7-1</i> of sorghum-sudangrass hybrid was fine-mapped to a 203.6 kb region between markers SORBI4G4-120 and SORBI4G4-680, and seven candidate genes for low HCN were predicted in this region based on sequence comparison with the sorghum reference genome. According to gene annotation, the candidate genes related to low HCN content may be different from those involved in the known regulation mode of sorghum dhurrin biosynthesis and metabolism.</p>","PeriodicalId":12809,"journal":{"name":"Genome","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Fine mapping of a major QTL <i>qPA7-1</i> for low hydrocyanic acid content in sorghum-sudangrass hybrid.\",\"authors\":\"Guofang Wu, Xiaoxia Yu, Zhuo Yu, Qianqian Lu, Dongsheng Yang, Yue Shi, Jiaqi Li, Jingwei Li\",\"doi\":\"10.1139/gen-2021-0114\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The purpose of this study was to study the genetic mechanism of low hydrocyanic acid (HCN) content. The segregation of HCN content trait in fresh stems and leaves was determined in the sorghum (<i>Sorghum bicolor</i> (L.) Moench)-sudangrass (<i>Sorghum sudanense</i> (Piper) Stapf) hybrid F<sub>2</sub> population (<i>N</i> = 1200), also used to detect a quantitative trait locus (QTL) for HCN content. Our hypothesis was that the additive effect of QTL was negative, showing that QTL was associated with low HCN. In the present research, a total of 11 simple sequence repeats (SSR) polymorphic primers were screened, and four SSR markers associated with low HCN content were developed based on the bulked segregant analysis method. A high-resolution genetic linkage group of the previously known <i>qPA7-1</i> locus of the low HCN trait was constructed by analyzing different populations, families, and recombinants. Then, the QTL <i>qPA7-1</i> of sorghum-sudangrass hybrid was fine-mapped to a 203.6 kb region between markers SORBI4G4-120 and SORBI4G4-680, and seven candidate genes for low HCN were predicted in this region based on sequence comparison with the sorghum reference genome. According to gene annotation, the candidate genes related to low HCN content may be different from those involved in the known regulation mode of sorghum dhurrin biosynthesis and metabolism.</p>\",\"PeriodicalId\":12809,\"journal\":{\"name\":\"Genome\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genome\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1139/gen-2021-0114\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/9/15 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1139/gen-2021-0114","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/9/15 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Fine mapping of a major QTL qPA7-1 for low hydrocyanic acid content in sorghum-sudangrass hybrid.
The purpose of this study was to study the genetic mechanism of low hydrocyanic acid (HCN) content. The segregation of HCN content trait in fresh stems and leaves was determined in the sorghum (Sorghum bicolor (L.) Moench)-sudangrass (Sorghum sudanense (Piper) Stapf) hybrid F2 population (N = 1200), also used to detect a quantitative trait locus (QTL) for HCN content. Our hypothesis was that the additive effect of QTL was negative, showing that QTL was associated with low HCN. In the present research, a total of 11 simple sequence repeats (SSR) polymorphic primers were screened, and four SSR markers associated with low HCN content were developed based on the bulked segregant analysis method. A high-resolution genetic linkage group of the previously known qPA7-1 locus of the low HCN trait was constructed by analyzing different populations, families, and recombinants. Then, the QTL qPA7-1 of sorghum-sudangrass hybrid was fine-mapped to a 203.6 kb region between markers SORBI4G4-120 and SORBI4G4-680, and seven candidate genes for low HCN were predicted in this region based on sequence comparison with the sorghum reference genome. According to gene annotation, the candidate genes related to low HCN content may be different from those involved in the known regulation mode of sorghum dhurrin biosynthesis and metabolism.
期刊介绍:
Genome is a monthly journal, established in 1959, that publishes original research articles, reviews, mini-reviews, current opinions, and commentaries. Areas of interest include general genetics and genomics, cytogenetics, molecular and evolutionary genetics, developmental genetics, population genetics, phylogenomics, molecular identification, as well as emerging areas such as ecological, comparative, and functional genomics.