基于少镜头学习法的癫痫发作预测。

Q1 Computer Science Brain Informatics Pub Date : 2022-09-16 DOI:10.1186/s40708-022-00170-8
Jamal Nazari, Ali Motie Nasrabadi, Mohammad Bagher Menhaj, Somayeh Raiesdana
{"title":"基于少镜头学习法的癫痫发作预测。","authors":"Jamal Nazari,&nbsp;Ali Motie Nasrabadi,&nbsp;Mohammad Bagher Menhaj,&nbsp;Somayeh Raiesdana","doi":"10.1186/s40708-022-00170-8","DOIUrl":null,"url":null,"abstract":"<p><p>Epileptic seizures prediction and timely alarms allow the patient to take effective and preventive actions. In this paper, a convolutional neural network (CNN) is proposed to diagnose the preictal period. Our goal is for those epileptic patients in whom seizures occur late and it is very challenging to record the preictal signal for them. In the previous works, generalized methods were inevitably used for this group of patients which were not very accurate. Our approach to solve this problem is to provide a few-shot learning method. This method, having the previous knowledge, is trained with only a small number of samples, learns new tasks and reduces the efforts to collect more data. Evaluation results for three patients from the CHB-MIT database, for a 10-min seizure prediction horizon (SPH) and a 20-min seizure occurrence period (SOP), averaged sensitivity of 95.70% and a false prediction rate (FPR) of 0.057/h and for the 5-min prediction horizon and the 25-min seizure occurrence period averaged sensitivity of 98.52% and a false prediction rate of (FPR) of 0.045/h. The proposed few-shot learning method, based on previous knowledge gained from the generalizable method, is regulated with a few new patient samples for the patient. Our results show that the accuracy obtained in this method is higher than the generalizable methods.</p>","PeriodicalId":37465,"journal":{"name":"Brain Informatics","volume":" ","pages":"21"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9481757/pdf/","citationCount":"0","resultStr":"{\"title\":\"Epilepsy seizure prediction with few-shot learning method.\",\"authors\":\"Jamal Nazari,&nbsp;Ali Motie Nasrabadi,&nbsp;Mohammad Bagher Menhaj,&nbsp;Somayeh Raiesdana\",\"doi\":\"10.1186/s40708-022-00170-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Epileptic seizures prediction and timely alarms allow the patient to take effective and preventive actions. In this paper, a convolutional neural network (CNN) is proposed to diagnose the preictal period. Our goal is for those epileptic patients in whom seizures occur late and it is very challenging to record the preictal signal for them. In the previous works, generalized methods were inevitably used for this group of patients which were not very accurate. Our approach to solve this problem is to provide a few-shot learning method. This method, having the previous knowledge, is trained with only a small number of samples, learns new tasks and reduces the efforts to collect more data. Evaluation results for three patients from the CHB-MIT database, for a 10-min seizure prediction horizon (SPH) and a 20-min seizure occurrence period (SOP), averaged sensitivity of 95.70% and a false prediction rate (FPR) of 0.057/h and for the 5-min prediction horizon and the 25-min seizure occurrence period averaged sensitivity of 98.52% and a false prediction rate of (FPR) of 0.045/h. The proposed few-shot learning method, based on previous knowledge gained from the generalizable method, is regulated with a few new patient samples for the patient. Our results show that the accuracy obtained in this method is higher than the generalizable methods.</p>\",\"PeriodicalId\":37465,\"journal\":{\"name\":\"Brain Informatics\",\"volume\":\" \",\"pages\":\"21\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9481757/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s40708-022-00170-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s40708-022-00170-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

摘要

癫痫发作预测和及时报警使患者能够采取有效的预防措施。本文提出了一种基于卷积神经网络(CNN)的预产期诊断方法。我们的目标是为那些癫痫发作较晚的癫痫患者,记录他们的前兆信号是非常具有挑战性的。在以往的工作中,不可避免地对这类患者采用了一般化的方法,准确度不高。我们解决这一问题的方法是提供一种少镜头学习方法。该方法具有之前的知识,只需要少量的样本进行训练,就可以学习新的任务,减少了收集更多数据的工作量。CHB-MIT数据库中3例患者的评估结果,10 min癫痫发作预测期(SPH)和20 min癫痫发作期(SOP)的平均敏感性为95.70%,错误预测率(FPR)为0.057/h; 5 min癫痫发作期和25 min癫痫发作期的平均敏感性为98.52%,错误预测率(FPR)为0.045/h。本文提出的小样本学习方法基于可泛化方法获得的先前知识,对患者进行少量新患者样本的调节。结果表明,该方法的精度高于可推广的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Epilepsy seizure prediction with few-shot learning method.

Epileptic seizures prediction and timely alarms allow the patient to take effective and preventive actions. In this paper, a convolutional neural network (CNN) is proposed to diagnose the preictal period. Our goal is for those epileptic patients in whom seizures occur late and it is very challenging to record the preictal signal for them. In the previous works, generalized methods were inevitably used for this group of patients which were not very accurate. Our approach to solve this problem is to provide a few-shot learning method. This method, having the previous knowledge, is trained with only a small number of samples, learns new tasks and reduces the efforts to collect more data. Evaluation results for three patients from the CHB-MIT database, for a 10-min seizure prediction horizon (SPH) and a 20-min seizure occurrence period (SOP), averaged sensitivity of 95.70% and a false prediction rate (FPR) of 0.057/h and for the 5-min prediction horizon and the 25-min seizure occurrence period averaged sensitivity of 98.52% and a false prediction rate of (FPR) of 0.045/h. The proposed few-shot learning method, based on previous knowledge gained from the generalizable method, is regulated with a few new patient samples for the patient. Our results show that the accuracy obtained in this method is higher than the generalizable methods.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Brain Informatics
Brain Informatics Computer Science-Computer Science Applications
CiteScore
9.50
自引率
0.00%
发文量
27
审稿时长
13 weeks
期刊介绍: Brain Informatics is an international, peer-reviewed, interdisciplinary open-access journal published under the brand SpringerOpen, which provides a unique platform for researchers and practitioners to disseminate original research on computational and informatics technologies related to brain. This journal addresses the computational, cognitive, physiological, biological, physical, ecological and social perspectives of brain informatics. It also welcomes emerging information technologies and advanced neuro-imaging technologies, such as big data analytics and interactive knowledge discovery related to various large-scale brain studies and their applications. This journal will publish high-quality original research papers, brief reports and critical reviews in all theoretical, technological, clinical and interdisciplinary studies that make up the field of brain informatics and its applications in brain-machine intelligence, brain-inspired intelligent systems, mental health and brain disorders, etc. The scope of papers includes the following five tracks: Track 1: Cognitive and Computational Foundations of Brain Science Track 2: Human Information Processing Systems Track 3: Brain Big Data Analytics, Curation and Management Track 4: Informatics Paradigms for Brain and Mental Health Research Track 5: Brain-Machine Intelligence and Brain-Inspired Computing
期刊最新文献
Novel machine learning-driven comparative analysis of CSP, STFT, and CSP-STFT fusion for EEG data classification across multiple meditation and non-meditation sessions in BCI pipeline. Rethinking the residual approach: leveraging statistical learning to operationalize cognitive resilience in Alzheimer's disease. CalciumZero: a toolbox for fluorescence calcium imaging on iPSC derived brain organoids. Blockchain-enabled digital twin system for brain stroke prediction. A temporal-spectral graph convolutional neural network model for EEG emotion recognition within and across subjects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1