{"title":"去细胞小鼠肝片段及其与人子宫内膜间充质细胞的再细胞化分析,作为临床应用的候选。","authors":"Fatomeh Panahi, Nafiseh Baheiraei, Maryam Nezhad Sistani, Mojdeh Salehnia","doi":"10.1007/s40204-022-00203-9","DOIUrl":null,"url":null,"abstract":"<p><p>Decellularized tissue has been used as a natural extracellular matrix (ECM) or bioactive biomaterial for tissue engineering. The present study aims to compare and analyze different decellularization protocols for mouse liver fragments and cell seeding and attachment in the created scaffold using human endometrial mesenchymal cells (hEMCs).After collecting and dissecting the mouse liver into small fragments, they were decellularized by Triton X-100 and six concentrations of sodium dodecyl sulfate (SDS; 0.025, 0.05, 0.1, 0.25, 0.5, and 1%) at different exposure times. The morphology and DNA content of decellularized tissues were studied, and the group with better morphology and lower DNA content was selected for additional assessments. Masson's tri-chrome and periodic acid Schiff staining were performed to evaluate ECM materials. Raman confocal spectroscopy analysis was used to quantify the amount of collagen type I, III and IV, glycosaminoglycans and elastin. Scanning electron microscopy and MTT assay were applied to assess the ultrastructure and porosity and cytotoxicity of decellularized scaffolds, respectively. In the final step, hEMCs were seeded on the decellularized scaffold and cultured for one week, and finally the cell attachment and homing were studied morphologically.The treated group with 0.1% SDS for 24 h showed a well preserved ECM morphology similar to native control and showing the minimum level of DNA. Raman spectroscopy results demonstrated that the amount of collagen type I and IV was not significantly changed in this group compared to the control, but a significant reduction in collagen III and elastin protein levels was seen (P < 0.001). The micrographs showed a porous ECM in decellularized sample similar to the native control with the range of 2.25 µm to 7.86 µm. After cell seeding, the infiltration and migration of cells in different areas of the scaffold were seen. In conclusion, this combined protocol for mouse liver decellularization is effective and its recellularization with hEMCs could be suitable for clinical applications in the future.</p>","PeriodicalId":20691,"journal":{"name":"Progress in Biomaterials","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9626698/pdf/40204_2022_Article_203.pdf","citationCount":"0","resultStr":"{\"title\":\"Analysis of decellularized mouse liver fragment and its recellularization with human endometrial mesenchymal cells as a candidate for clinical usage.\",\"authors\":\"Fatomeh Panahi, Nafiseh Baheiraei, Maryam Nezhad Sistani, Mojdeh Salehnia\",\"doi\":\"10.1007/s40204-022-00203-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Decellularized tissue has been used as a natural extracellular matrix (ECM) or bioactive biomaterial for tissue engineering. The present study aims to compare and analyze different decellularization protocols for mouse liver fragments and cell seeding and attachment in the created scaffold using human endometrial mesenchymal cells (hEMCs).After collecting and dissecting the mouse liver into small fragments, they were decellularized by Triton X-100 and six concentrations of sodium dodecyl sulfate (SDS; 0.025, 0.05, 0.1, 0.25, 0.5, and 1%) at different exposure times. The morphology and DNA content of decellularized tissues were studied, and the group with better morphology and lower DNA content was selected for additional assessments. Masson's tri-chrome and periodic acid Schiff staining were performed to evaluate ECM materials. Raman confocal spectroscopy analysis was used to quantify the amount of collagen type I, III and IV, glycosaminoglycans and elastin. Scanning electron microscopy and MTT assay were applied to assess the ultrastructure and porosity and cytotoxicity of decellularized scaffolds, respectively. In the final step, hEMCs were seeded on the decellularized scaffold and cultured for one week, and finally the cell attachment and homing were studied morphologically.The treated group with 0.1% SDS for 24 h showed a well preserved ECM morphology similar to native control and showing the minimum level of DNA. Raman spectroscopy results demonstrated that the amount of collagen type I and IV was not significantly changed in this group compared to the control, but a significant reduction in collagen III and elastin protein levels was seen (P < 0.001). The micrographs showed a porous ECM in decellularized sample similar to the native control with the range of 2.25 µm to 7.86 µm. After cell seeding, the infiltration and migration of cells in different areas of the scaffold were seen. In conclusion, this combined protocol for mouse liver decellularization is effective and its recellularization with hEMCs could be suitable for clinical applications in the future.</p>\",\"PeriodicalId\":20691,\"journal\":{\"name\":\"Progress in Biomaterials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9626698/pdf/40204_2022_Article_203.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Biomaterials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s40204-022-00203-9\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/9/19 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40204-022-00203-9","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/9/19 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Analysis of decellularized mouse liver fragment and its recellularization with human endometrial mesenchymal cells as a candidate for clinical usage.
Decellularized tissue has been used as a natural extracellular matrix (ECM) or bioactive biomaterial for tissue engineering. The present study aims to compare and analyze different decellularization protocols for mouse liver fragments and cell seeding and attachment in the created scaffold using human endometrial mesenchymal cells (hEMCs).After collecting and dissecting the mouse liver into small fragments, they were decellularized by Triton X-100 and six concentrations of sodium dodecyl sulfate (SDS; 0.025, 0.05, 0.1, 0.25, 0.5, and 1%) at different exposure times. The morphology and DNA content of decellularized tissues were studied, and the group with better morphology and lower DNA content was selected for additional assessments. Masson's tri-chrome and periodic acid Schiff staining were performed to evaluate ECM materials. Raman confocal spectroscopy analysis was used to quantify the amount of collagen type I, III and IV, glycosaminoglycans and elastin. Scanning electron microscopy and MTT assay were applied to assess the ultrastructure and porosity and cytotoxicity of decellularized scaffolds, respectively. In the final step, hEMCs were seeded on the decellularized scaffold and cultured for one week, and finally the cell attachment and homing were studied morphologically.The treated group with 0.1% SDS for 24 h showed a well preserved ECM morphology similar to native control and showing the minimum level of DNA. Raman spectroscopy results demonstrated that the amount of collagen type I and IV was not significantly changed in this group compared to the control, but a significant reduction in collagen III and elastin protein levels was seen (P < 0.001). The micrographs showed a porous ECM in decellularized sample similar to the native control with the range of 2.25 µm to 7.86 µm. After cell seeding, the infiltration and migration of cells in different areas of the scaffold were seen. In conclusion, this combined protocol for mouse liver decellularization is effective and its recellularization with hEMCs could be suitable for clinical applications in the future.
期刊介绍:
Progress in Biomaterials is a multidisciplinary, English-language publication of original contributions and reviews concerning studies of the preparation, performance and evaluation of biomaterials; the chemical, physical, biological and mechanical behavior of materials both in vitro and in vivo in areas such as tissue engineering and regenerative medicine, drug delivery and implants where biomaterials play a significant role. Including all areas of: design; preparation; performance and evaluation of nano- and biomaterials in tissue engineering; drug delivery systems; regenerative medicine; implantable medical devices; interaction of cells/stem cells on biomaterials and related applications.