Kathleen V. Casto , Timothy Jordan , Nicole Petersen
{"title":"比较月经周期和激素避孕对人类静息状态功能连接影响的激素模型","authors":"Kathleen V. Casto , Timothy Jordan , Nicole Petersen","doi":"10.1016/j.yfrne.2022.101036","DOIUrl":null,"url":null,"abstract":"<div><p>Oral contraceptives (OCs) are widely used yet understudied given their potential for public health consequences. Emerging investigations scaling from single-subject, dense-sampling neuroimaging studies to population-level metrics have linked OCs to altered brain structure and function. Modeling the hypogonadal, hypergonadal, or mixed state effects of OCs in terms of their impact on hormone action in the brain is a valuable approach to synthesizing results across neuroimaging studies and comparing OC effects to companion findings from research on menstrual cycle phase effects on brain anatomy and function. Resting-state functional connectivity studies provide a powerful tool to evaluate the role of OCs on the intrinsic network connectivity that underlies multiple behavioral domains. The preponderance (but not consensus) of the current literature indicates that (1) as the menstrual cycle proceeds from a low to high progesterone state, prefrontal connectivity increases and parietal connectivity decreases; (2) OCs tend to mimic this connectivity pattern; therefore (3) OCs may produce a hyperprogestogenic state in the brain, in spite of overall reductions in endogenous steroid hormone levels. Alternative models are also considered.</p></div>","PeriodicalId":12469,"journal":{"name":"Frontiers in Neuroendocrinology","volume":"67 ","pages":"Article 101036"},"PeriodicalIF":6.5000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/3b/02/nihms-1840928.PMC9649880.pdf","citationCount":"11","resultStr":"{\"title\":\"Hormone-based models for comparing menstrual cycle and hormonal contraceptive effects on human resting-state functional connectivity\",\"authors\":\"Kathleen V. Casto , Timothy Jordan , Nicole Petersen\",\"doi\":\"10.1016/j.yfrne.2022.101036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Oral contraceptives (OCs) are widely used yet understudied given their potential for public health consequences. Emerging investigations scaling from single-subject, dense-sampling neuroimaging studies to population-level metrics have linked OCs to altered brain structure and function. Modeling the hypogonadal, hypergonadal, or mixed state effects of OCs in terms of their impact on hormone action in the brain is a valuable approach to synthesizing results across neuroimaging studies and comparing OC effects to companion findings from research on menstrual cycle phase effects on brain anatomy and function. Resting-state functional connectivity studies provide a powerful tool to evaluate the role of OCs on the intrinsic network connectivity that underlies multiple behavioral domains. The preponderance (but not consensus) of the current literature indicates that (1) as the menstrual cycle proceeds from a low to high progesterone state, prefrontal connectivity increases and parietal connectivity decreases; (2) OCs tend to mimic this connectivity pattern; therefore (3) OCs may produce a hyperprogestogenic state in the brain, in spite of overall reductions in endogenous steroid hormone levels. Alternative models are also considered.</p></div>\",\"PeriodicalId\":12469,\"journal\":{\"name\":\"Frontiers in Neuroendocrinology\",\"volume\":\"67 \",\"pages\":\"Article 101036\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2022-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/3b/02/nihms-1840928.PMC9649880.pdf\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Neuroendocrinology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0091302222000590\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Neuroendocrinology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0091302222000590","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
Hormone-based models for comparing menstrual cycle and hormonal contraceptive effects on human resting-state functional connectivity
Oral contraceptives (OCs) are widely used yet understudied given their potential for public health consequences. Emerging investigations scaling from single-subject, dense-sampling neuroimaging studies to population-level metrics have linked OCs to altered brain structure and function. Modeling the hypogonadal, hypergonadal, or mixed state effects of OCs in terms of their impact on hormone action in the brain is a valuable approach to synthesizing results across neuroimaging studies and comparing OC effects to companion findings from research on menstrual cycle phase effects on brain anatomy and function. Resting-state functional connectivity studies provide a powerful tool to evaluate the role of OCs on the intrinsic network connectivity that underlies multiple behavioral domains. The preponderance (but not consensus) of the current literature indicates that (1) as the menstrual cycle proceeds from a low to high progesterone state, prefrontal connectivity increases and parietal connectivity decreases; (2) OCs tend to mimic this connectivity pattern; therefore (3) OCs may produce a hyperprogestogenic state in the brain, in spite of overall reductions in endogenous steroid hormone levels. Alternative models are also considered.
期刊介绍:
Frontiers in Neuroendocrinology (FIN) publishes a wide range of informative articles including comprehensive reviews, systematic reviews, opinion pieces, and meta-analyses. While the majority of reviews are invited, we also embrace unsolicited reviews and meta-analyses, as well as proposals for thematic special issues, provided they meet our rigorous quality standards. In addition, we encourage authors to submit commentaries that concisely present fresh ideas or offer further analysis to delve deeper into the implications of an article published in our journal.